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1 Introduction

Managers often rely on informal promises rather than formal contracts to motivate their workers.

One problem with such �relational contracts�is that employees may not be able to observe whether

managers are complying with their promises. This will be the case in particular if the managers�

promises are contingent on information that only they observe. The employees�inability to observe

compliance then gives rise to con�icts during which employees punish managers by withholding

e¤ort, producing low quality goods, departing for other �rms and the like. Evidence from recent

labor disputes, and case studies about �rms that rely on relational contracts, suggest that such

worker punishments can impose signi�cant costs on �rms (Krueger and Mas 2004, Mas 2008, and the

case studies discussed below). The prevalence of relational contracts, their apparent susceptibility

to con�icts, and the potential cost of these con�icts raise the question of what managers can do to

manage such con�icts and thus make relational contracts more e¢ cient. The aim of this paper is

to provide an answer to this question.

In the speci�c setting we examine a manager and an employee are in an in�nitely repeated

relationship. The employee�s e¤ort and the �rm�s pro�ts are observable but not contractible. To

motivate the employee, the manager must therefore promise him a bonus. The crucial feature of

the game is that the �rm�s opportunity costs of paying the employee can change every period and

are privately observed by the manager. Speci�cally, the �rm�s opportunity costs may either be

high � for instance because of an exceptional investment opportunity, the need to cover losses in

another part of the �rm or the like � or they may be low. Suppose now that the manager promises
the employee a bonus for providing the desired e¤ort level but makes this promise contingent on

the �rm�s opportunity costs being low. If the manager then ends up not paying the bonus, the

employee will not be able to observe her motives. Is the manager not paying the bonus because it

is more e¢ cient to use resources otherwise, as she claims? Or is she simply making up an excuse to

extract some of the employee�s rents? Since the employee cannot observe the manager�s motives,

he must then punish her whenever she does not pay a bonus.

What can the manager do to mitigate this punishment? One option would be for the manager

to limit herself to "clear" promises that are not contingent on her private information about the

�rm�s opportunity costs. While such clear promises would allow the manager to avoid con�icts all

together, however, they would force her to pay bonuses even when opportunity costs are high. The

manager therefore has to trade-o¤ the bene�ts of �exibility and the costs of con�icts. How does

this trade-o¤ evolve over time and to what extent does it depend on the history of the relationship?

The optimal relational contract that we derive in this paper answers this question. Before describing
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it, however, it is useful to discuss two examples that illustrate key features of our set up and of the

optimal relational contract.

The �rst example is Lincoln Electric in the early 1990s. At the time Lincoln Electric was a

leading manufacturer of welding machines that was well-known for its unusual incentive structure.

One feature of this structure was management�s promise to share a signi�cant fraction of pro�ts

with its factory workers. In 1992 Lincoln�s U.S. business had generated a signi�cant pro�t and, as

a result, its U.S. workers expected to be paid their bonus. Mounting losses in its recently acquired

foreign operations, however, more than wiped out U.S. pro�ts. This presented CEO Donald

Hastings with a dilemma: "Our 3,000 U.S. workers would expect to receive, as a group, more than

$50 million. If we were in default, we might not be able to pay them. But if we didn�t pay the bonus,

the whole company might unravel" (Hastings 1999, p.4). To preserve the relational contract with

its U.S. workers, and thus prevent the company from unraveling, management decided to borrow

$52.1 million and pay the bonus.

Why would management have to take the seemingly ine¢ cient step of borrowing money to pay

the bonus? After all, the bonus was explicitly a "cash-sharing bonus" and U.S. workers had a

long history of accepting �uctuations in the bonus in response to �uctuations in U.S. pro�ts. The

reason, it seems, was that U.S. workers were unable to observe foreign losses. They therefore could

not verify whether U.S. pro�ts really were needed to cover foreign losses or whether money was

being hidden from them. This explains why Hastings also �[...] instituted a �nancial education

program so that employees would understand that no money was being hidden from them [...]�

(Hastings 1999, p.8). At Lincoln Electric, therefore, management�s private information about the

opportunity costs of bonus payments forced them to trade-o¤ the bene�ts of �exibility with the

costs of con�ict.

The second example also took place in the early 1990s but it did so on trading �oor of an invest-

ment bank rather than factory �oor of a manufacturing �rm.4 Speci�cally, in 1991 management

at Credit Suisse made bonus payments to the traders at their First Boston subsidiary that were

below those at competing �rms. The traders interpreted the low bonus payments as management

going back on a previous promise of higher pay. As a result they demanded a larger bonus even if

that meant that the �rm had to dip into its capital. Management, however, stood �rm, arguing

that the low bonus payments were justi�ed because of the need to �build capital,�especially since

Credit Suisse had to inject $300m into First Boston the previous year to cover trading losses. To

reassure the traders management then �promised that 1992 would be di¤erent � that salaries and

4This example and the following quotes are taken from �Taking the Dare,�The New Yorker, 1993.
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bonuses would again be competitive.� Traders were forthcoming in expressing their disappointment

but disruptions were limited.

Things were di¤erent, however, the following year when management once again authorized

bonus payments that were below the traders�expectations. This time �many traders seemed to

drag their heels, further depressing the �rm�s earnings" and "defections [...] increased as soon as

First Boston actually began paying bonuses, on March 1st [1993].� Given the severity of the traders�

response, management could no longer rely on simply promising more pay next year. Instead:

�Morale-boosting sessions were hastily organized [...]. Some of the investment bankers [...] were

able to negotiate guaranteed pay raises this year � in some cases of as much as a hundred per

cent. Some are waiting to see if such pledges are honored; others acknowledge that the very need

for arrangements like these suggests that First Boston is a long way from restoring its culture of

trust.�

Initially, therefore, management chose to adapt bonus payments to their opportunity costs and

was willing to accept the traders�response, which turned out to be limited. After two consecutive

years of low bonus payments, however, the traders�response was su¢ ciently severe for management

to commit to �guaranteed pay raises.�By doing so they forwent the ability to adapt pay to any

contingencies without blatantly breaking their promise.

The gradual nature of the traders�punishment, and the eventual need for guaranteed bonus

payments, are also features of the optimal relational contract in our setting. To sketch the optimal

relational contract, suppose that last period the �rm�s opportunity costs of paying a bonus were

low but that the �rm now experiences a number of consecutive periods with high opportunity costs.

In this case, how will the manager�s promises and the employee�s e¤ort evolve over time?

The manager will start out in the current period by promising the employee a bonus if oppor-

tunity costs are low but none if they are high. Once the manager �nds out that opportunity costs

are indeed high she will not pay a bonus and time will move on to the next period.

Next period the manager will then promise the employee a larger bonus than she did in the

previous period but once again she will make the bonus contingent on opportunity costs being

low. The employee will respond to the failure to pay a bonus in the previous period by reducing

e¤ort but this e¤ort reduction will be limited because of the prospect of a larger bonus in case

opportunity costs turn out to be low.

As the �rm experiences additional periods with high opportunity costs, the manager will promise

the employee larger and larger bonuses but she will continue to make these promises contingent

on opportunity costs being low. At the same time the employee will respond to the manager�s
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repeated failure to pay a bonus by reducing his e¤ort more and more.

Because of decreasing returns to e¤ort, these e¤ort reductions will become increasingly costly for

the �rm. Eventually, therefore, the manager will limit further reductions in e¤ort by promising to

pay a bonus even if opportunity costs are high. Such a �guaranteed bonus�is therefore symptomatic

for a severe crisis and a signi�cant loss of trust, as suggested in the above quote.

If the �rm experiences even more periods with high opportunity costs, the manager will initially

increase the guaranteed bonus. Eventually, however, the need for the guaranteed bonus to be

credible will force the manager to reduce its amount. While the amount of the guaranteed bonus

changes over time, it will never be as large as the bonus that the manager promises to pay in case

opportunity costs are low. In other words, the manager will never make perfectly clear promises

that are entirely independent of the �rm�s opportunity costs. The reason why the manager never

makes entirely clear promises is that she is particularly tempted to renege on her promises when

opportunity costs are high. To be credible, a clear promise would therefore have to be quite small.

As a result, the manager will always be better o¤ promising a larger bonus if opportunity costs

are low than if they are high, even though this di¤erence in promised bonuses necessarily leads to

con�icts.

After su¢ ciently many consecutive periods with high opportunity costs the �rm�s performance

will bottom out. At this point additional periods with high opportunity costs will no longer reduce

the employee�s e¤ort or change the manager�s promises. Even at during these periods, however, the

employee will provide strictly positive e¤ort. In our setting, therefore, the employment relationship

will never terminate.

What does it take for a con�ict to end? No matter how many consecutive periods with high

opportunity costs � and thus no or low bonus payments � the �rm experiences, it always takes

only a single period with low opportunity costs for the con�ict to end. Essentially, whenever

opportunity costs are low, the manager repays her debts to the employee with a single large bonus.

In response the employee agrees to let bygones be bygones and returns to his high, pre-con�ict e¤ort

level. Overall then the optimal relational contract gives rise to asymmetric cycles during which

expected pro�ts and e¤ort decline gradually but recover instantaneously. These cycles continue

forever and never end.

The prediction that the manager loses the employee�s trust gradually but can restore it instan-

taneously may be somewhat counter-intuitive. There are two key reasons for this result: �rst,

there is never any uncertainty about the manager�s type and, second, she always has access to

enough liquidity to repay all of her debts with a single bonus payment. In our main extension
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we relax this second assumption and instead allow for the bonus payment in any one period to be

constrained by the surplus generated in that period. If a con�ict is su¢ ciently severe, it then takes

a number of consecutive periods with low opportunity costs for the manager to repay her debts

and for the employee�s e¤ort to return to its pre-con�ict level. Liquidity constraints therefore slow

down recoveries.

Another e¤ect of liquidity constraints is to change the dynamics of the employee�s punishment.

Speci�cally, the employee may now actually respond to a con�ict by increasing e¤ort, at least

temporarily. Why would the employee increase e¤ort in response to the manager�s failure to pay

him a bonus? The reason is that the employee knows that the more e¤ort he provides, the more

surplus will be generated, and thus the larger the bonus the manager will be able to pay in case

opportunity costs turn out to be low. This reasoning is re�ected in the Lincoln Electric example

that we started to describe above. In particular, in early 1993 � only a few months after Lincoln
Electric had taken on debt to pay the bonus � management realized that European losses would

once again wipe out U.S. pro�ts. In the following quote Lincoln Electric CEO Don Hastings

describes how management responded to this challenge.

�So rather than downsize, we turned to our U.S. employees for help. I presented a 21-point

plan to the board that called for our U.S. factories to boost production dramatically [...]. �We blew

it,� I said [to the U.S. employees]. �Now we need you to bail the company out. If we violate the

covenants, banks won�t lend us money. And if they don�t lend us money, there will be no bonus in

December.� Thanks to the Herculean e¤ort in the factories and in the �eld, we were able to increase

revenues and pro�ts enough in the United States to avoid violating our loan covenants. [...] On

December 4, 1993, we paid a gross bonus of $55.3 million with borrowed money.�

In line with the prediction that we sketched above, therefore, Lincoln Electric�s U.S. employees

increased their e¤orts to relax the �rm�s liquidity constraints which, in turn, allowed management

to pay the bonus.

2 Literature Review

This paper contributes to several strands of literature. Since Bull (1987), there is a prominent line

of research on relational contracts. One general lesson from this literature is that the relational

contract is sustainable so long as the sum of the reneging temptations do not exceed the total

future surplus of the relationship; see for example MacLeod and Malcomson (1989) in the case of

perfect information, Baker, Gibbons, and Murphy (1994, 2002) in cases when explicit contracts or

ownership structure can be used; Levin (2003) in the case of imperfect public monitoring, Levin
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(2002) in the case of multiple agents, and Rayo (2007) when multiple agents, explicit contract, and

ownership structure are all present. In these models, the optimal relational contracts can all be

implemented by a sequence of stationary contracts so that past events along the equilibrium do not

a¤ect the relationship in the future. In contrast, this paper focuses on how past events a¤ect the

future of the relationship, and in particular, how players adjust their actions to manage the �rm�s

reneging temptations when the future surplus of the relationship �uctuates.

The dynamics along the equilibrium play relates this model to a recent and growing literature

on relational contracts with equilibrium dynamics. Thomas and Worrall (2010) study a partnership

game with perfect information and two-sided limited liability and show that the relationship be-

comes more e¢ cient over time as the division of future rents becomes more equal. Chassang (2010)

found that private information prevents the relationship from e¢ cient exploration of new produc-

tion opportunities and the relationship may settle in di¤erent long run equilibrium. Fong and Li

(2010) derive implications on how job security, pay level, and the sensitivity of pay to performance

change over time when the worker has moral hazard and is protected by limited liability constraint.

Padro i Miguel &Yared (2010) show that costly intervention from the principal is inevitable when

the agent has asymmetric information and generate predictions on the likelihood, duration, and

intensity of intervention. One distinctive feature of our equilibrium dynamic is that the relationship

displays sluggish decay and instantaneous recovery: the relationship cycles over time and does not

converge to a steady state. The di¤erence in long-run dynamics is in part driven by the source

of asymmetric information: all the models above rely on hidden action and we depend on hidden

information. Halac (forthcoming), Watson (1999, 2002), and Yang (2009) study relational contracts

in which the type of the agents are their private information. In these models, the type of the agent

is �xed, and dynamics arises because the principal update his belief of the type of agent based on

the past history. The equilibrium play in these models converges to a long-run steady state. In

our model, the type of the �rm is independently distributed over time, and past history does not

contain information about type of the �rm in the future.

Our model is closer to the literature of dynamic games with hidden information; see for example

Abdulkadiroglu and Bagwell (2010), Athey and Bagwell (2001, 2008), Athey, Bagwell and Sanchirico

(2004), Hauser and Hopenhyan (2008), and Mobius (2001). We add to this literature in two aspects.

First, this literature has typically studied relationships with symmetrical players and multi-sided

private information, and we model an asymmetric relationship with one-sided private information.

One qualitative di¤erence is that �rst-best is no longer obtainable in a discrete time setting even if

the players are su¢ ciently patient. Second, this literature has mostly focused on settings in which
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transfer is not possible, and we allow for free transfers in non-shock states and costly ones in shock

states. If transfer is free in all states, Levin (2003) shows that the optimal relational contract with

hidden information is stationary and constrained e¢ cient for su¢ ciently patient players. In our

model, we show that a small probability in costly transfer can greatly change the structure of the

relationship by generating ine¢ ciency in every period.

To the extent that e¢ ciency calls for the �rm to pay only in non-shock states, our model has

a �avor of risk-sharing. Kocherlakota (1996) studies e¢ cient risk sharing without commitment

between two risk-averse agents when information is public. Hertel (2004) examines the case with

two-sided asymmetric information without commitment. Thomas and Worrall (1990) study an

one-sided asymmetric information problem but assumes away the commitment issue. Our model

has one-sided asymmetric information and adds to the literature in two other aspects. First, this

literature has traditionally focused more on long-run outcomes and we supplement it with more

detailed description of how the relationship evolves. Second, the literature has typically assumed

that the agent�s endowments are exogenously given whereas we have focused on a case in which

the sizes of the pies in the future depend on they were divided in the past.

3 The Model

A �rm and a worker are in an in�nitely repeated relationship. Time is discrete and denoted by

t = f1; 2; :::;1g.
At the beginning of any period t the �rm makes the worker a non-binding o¤er. For reasons

that will become clear shortly, the o¤er consists of two bonus payments bn;t and bs;t, where the

subscripts n and s stand for �no shock�and �shock.� After the �rm makes the o¤er, the worker

either accepts the o¤er or rejects it. We denote the worker�s decision by dt, where dt = 0 if he

rejects the o¤er and dt = 1 if he accepts it. If the worker rejects the o¤er, the �rm and the worker

realize their per-period outside options � > 0 and u > 0 and time moves on to period t+ 1.

If, instead, the worker accepts the �rm�s o¤er, he next decides on his e¤ort level et � 0. E¤ort
is costly to the worker and we denote his e¤ort costs by c(et). We assume that c (0) = c0 (0) = 0

and that for all et � 0, c0 (et) � 0, c00 (et) > 0; and limet!1 c0(et) =1. After the worker provides
e¤ort et, the �rm realizes output y(et). We assume that y (0) = 0 and that for all et � 0, y0 (et) � 0,
and y00 (et) < 0. E¤ort et, e¤ort costs c (et), and output y (et) are observable by the worker and

the �rm but they are not contractible.

After the �rm receives output y(et), it privately observes whether or not it has been hit by

a shock. Speci�cally, the �rm privately observes the state of the world �t 2 fn; sg, where n
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and s stand for �no shock�and �shock.� The shock state occurs with probability � 2 (0; 1) and
the no shock state occurs with probability (1� �). The state of the world determines the �rm�s

opportunity cost of paying the worker: if no shock occurs, paying the worker some bonus b costs

the �rm b; if, instead, a shock does occur, paying the worker b costs the �rm (1 + �) b, where

� > 0. We do not model explicitly why the �rm�s opportunity costs may be high. As discussed in

the Introduction, however, �rms do sometimes face high opportunity costs of paying their workers,

for instance, because they need to borrow money to make their payments, as in the Lincoln Electric

example.

After the �rm observes the state of the world, it pays the worker a bonus bt � 0. Since the

�rm�s initial o¤er was non-binding, the bonus payment bt can be di¤erent from the promised bonus

payments bn;t and bs;t. The bonus payment does, however, have to be positive since the worker is

assumed to be liquidity constrained.

Finally, at the end of period t, the �rm and the worker observe the realization xt of a public

randomization device. The existence of a public randomization device is a common assumption

in the literature on imperfect public monitoring and is typically made to convexify the set of

equilibrium payo¤s. The timing is summarized in Figure 1.

The �rm and the worker are risk neutral and try to maximize their discounted expected pro�t

and payo¤ streams. The �rm and the worker both discount the future at a rate � 2 [0; 1) per
period. At the beginning of any period t, the �rm�s expected pro�ts are given

�t = (1� �)
1X
�=t

���tE [� + d� [y (e� )� (1 + ��) b� � �]]

and the worker�s expected payo¤ is given by

ut = (1� �)
1X
�=t

���tE [u+ d� (b� � u� c (e� ))] .

Note that we multiply the RHS of each expression by (1� �) to express pro�ts and payo¤s as per
period averages.

We follow the literature on imperfect public monitoring and restrict attention to Perfect Public

Equilibria in which (i.) the �rm and the worker play public strategies and (ii.) for every date

and every history, the strategies are a Nash Equilibrium from that point on. Public strategies are

strategies in which the players condition their actions only on publicly available information.

Formally, let ht+1 = fbn;� , bs;� , d� , e� , b� , x�gt�=1 denote the public history at the beginning
of any period t + 1 and let Ht+1 = fht+1g denote the set of all possible histories. Note that

H1 = �. A public strategy for the �rm speci�es (i.) for every period and every possible public
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history, the bonus o¤er in case a shock occurs and in case it does not occur and (ii.) for every

period, every possible public history, every decision by the worker, every e¤ort choice by the worker,

and every state, the �rm�s bonus payments. More precisely, a public strategy for the �rm sF is

a sequence of functions fBs;t, Bn;t, Btg1t=1, where Bs;t : Ht ! [0;1), Bn;t : Ht ! [0;1), and
Bt : Ht [ fbs;t, bn;t, dt, �tg ! [0;1). Similarly, a public strategy for the worker speci�es, for

every period, every possible public history, and every possible bonus o¤er, whether he accepts or

rejects the �rm�s o¤er and how much e¤ort he provides. More precisely, a public strategy for

the worker sW is a sequence of functions fDt, Etg1t=1, where Dt : Ht [ fbs;t, bn;tg ! f0; 1g and
Et : Ht [ fbs;t, bn;t, dtg ! [0;1).

We denote by �t (sF ; sW ) and ut (sF ; sW ) the �rm�s expected pro�ts and the worker�s expected

payo¤ at the beginning of period t, conditional on the public strategies sF and sW . Our aim is to

characterize the Perfect Public Equilibria that are Pareto e¢ cient in the �rst period.

Before we move on to solve this model, it is worth making a few observations. First, note

that in contrast to the worker, the �rm is never liquidity constrained. In principle, the �rm can

therefore pay the worker any positive amount, even when its opportunity costs of doing so are high.

We relax this assumption in Section 6. Second, we assume throughout the paper that the �rm

cannot save across periods. We make this assumption for simplicity. Note, however, that as long

as the �rm is not liquidity constrained, this assumption is innocuous. Finally, note that our model

is similar to a standard trust game (references). In line with the literature on trust games, one

can interpret the worker�s e¤ort as a measure of how much he trusts the �rm.

4 Preliminaries

4.1 PPE Payo¤ Set and Recursive Formulation

In this section, we use the technique developed by Abreu, Pearce, Stacchetti (1990) to characterize

the PPE payo¤. The basic idea of Abreu, Pearce, Stacchetti (1990) is that a player�s total payo¤

in a repeated game can be decomposed into a current payo¤ and a future continuation payo¤. This

transforms an in�nitely repeated game into a two stage game. The action of a player maximizes

the weighted average of his payo¤ in these two stages. The key insight of Abreu, Pearce, Stacchetti

(1990) is that as long as the continuation payo¤ lies in the PPE payo¤ set, and can therefore be

supported by some equilibrium play, the player�s total payo¤ can also be supported by a PPE. This

allows the PPE payo¤ set to be characterized recursively.

Denote the PPE payo¤ set of our game by E and consider a payo¤ pair (�; u) 2 E such that

the �rm and the worker join the relationship in the stage game. To support (�; u) as a PPE payo¤
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pair, one speci�es in the stage game the agent�s e¤ort level e and the principal�s bonus payment bs

and bn depending on the state of the world. In addition, (�; u) assigns a continuation payo¤ to

each publicly observable outcomes. Let (�s; us) and (�n; un) be continuation payo¤ pairs along the

equilibrium path in the shock and no shock states. The set of necessary and su¢ cient conditions

for (�; u) to be a PPE payo¤ is such that (a.) the set of actions and continuations payo¤s speci�ed

are feasible, (b.) the players cannot bene�t from deviating to other actions, and (c.) (�; u) is equal

to the weighted average of current payo¤ and future continuation payo¤.

Feasibility For the actions to be feasible, the requirement is that the bonuses are non-negative

and so is the e¤ort level. Speci�cally, we need

bs � 0; (NegS)

bn � 0; (NegN )

and

e � 0: (Nege)

Recall that the non-negativity constraints are the bonus levels re�ect the limited liability of the

agent. The constraint on e¤ort is a normalization.

For the continuation payo¤s to be feasible, we need that the continuation payo¤s are also PPE

payo¤s. In other words, we need

(�s; us) 2 E (Self-EnfS)

and

(�n; un) 2 E: (Self-EnfN)

No Deviation For the players not to deviate, we need to consider two types of deviations:

o¤-schedule and on-schedule. O¤-schedule deviations are those that can be publicly observed.

If an o¤-schedule deviation occurs, there is no loss of generality in assuming that the players will

permanently break up the relationship (by taking their outside options), as this is the worst possible

equilibrium (Abreu 1988). Here, the principal deviates o¤-schedule when he fails to pay a bonus

equalling either bs or bn: When this occurs, the principal�s continuation payo¤s will always be �:

To prevent the principal from o¤-schedule deviations, it su¢ ces that his loss in future continu-

ation payo¤ exceeds his maximum possible current gain from deviating. Note that the principal�s

current gain from deviation is maximized when he pays zero bonus, and this implies that the prin-

cipal will not deviate o¤-schedule when the gain from reneging the bonus in its entirety is smaller
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than the loss in his continuation value. This gives us the inequalities

��s � �� � (1� �) (1 + �) bs (RCS)

and

��n � �� � (1� �) bn: (RCN)

The �rst inequality prevents the principal from o¤-schedule deviation in the shock state and second

one in the no shock state. In both inequalities, the left hand sides are future losses in continuation

from o¤-schedule deviation and the right hand sides are the maximal current gain.

For the agent, he deviates o¤-schedule when he does not put in e¤ort e: When this occurs, the

agent will receive zero bonus and that his continuation payo¤ will be u: By deviating away from

e; the agent gains most by putting in zero level of e¤ort. Therefore, to prevent the agent from

o¤-schedule deviation, it su¢ ces that the agent�s payo¤ from putting in zero e¤ort and receiving a

continuation payo¤ of u is smaller than his payo¤ on the equilibrium path. In other words,

�u � u: (ICW)

In addition to o¤-schedule, we need to consider on-schedule deviations, which are those privately

observed by the player. Since the state of the world is the principal�s private information, on-

schedule deviations include that the principal paying out bs in a no-shock state or paying out bn in

a shock state. To prevent the principal from paying out bs in a no-shock state, we need

� (�n � �s) � (1� �) (bn � bs): (ICN)

To prevent the principal from paying out bn in a shock state, we need

� (�n � �s) � (1 + �) (1� �) (bn � bs): (ICS)

Promise-Keeping Finally, the consistency of the PPE payo¤ decomposition requires that the

players�payo¤s are equal to the weighted sum of current and future payo¤s. Speci�cally, we have

� = � ((1� �) (y (e)� (1 + �)bs) + ��s) + (1� �) ((1� �) (y (e)� bn) + ��n) (PKF)

and

u = � (1� �) bs + ��us + (1� �) (1� �) bn + (1� �) �un � (1� �) c (e) . (PKW)
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4.2 PPE Payo¤ Frontier

In general, characterizing the PPE payo¤ set is complicated because it is a two-dimensional set. In

our game, however, E is completely characterized by its payo¤ frontier, a one-dimensional curve.

This simpli�cation results from the fact that taking outside options for all periods is a PPE and

that we have public randomization. De�ne the payo¤ frontier as

u(�) = maxfu0 : (�; u0) 2 Eg:

The next lemma shows that every payo¤ pair below the payo¤ frontier u and above the agent�s

outside option u belongs to the PPE payo¤ set. In addition, u is concave and at the principal�s

maximal PPE payo¤, the agent�s payo¤ is equal to his outside option.

LEMMA A1. Let � be the maximum PPE payo¤ of the principal. The PPE payo¤ set E is given

by

E = f(�0; u0) : �0 2 [�; �]; u0 2 [u; u(�0)]g:

In addition, u is concave, and

u(�) = u:

To characterize the payo¤ frontier u; we �rst show that exists a cuto¤ value �0 that divides the

frontier into two areas. To the left of �0; the payo¤ frontier is sustained by a randomization between

the payo¤s from outside options (�; u) and (�0; u(�0)): To the right of �0; the payo¤ frontier is

sustained by pure strategies such that the principal and the agent join the relationship in the stage

game. Note that it is possible that �0 = �: In this case, the entire payo¤ frontier is sustained by

pure strategies.

LEMMA A2. There exists a �0 such that for all � 2 [�0; �]; u(�) can be sustained by pure strategy.

For payo¤s larger than �, an important property of the PPE payo¤ frontier is that it is sequen-

tially optimal. Speci�cally, for each payo¤ pair on the frontier, all of the continuation payo¤s must

also be on the frontier.

LEMMA A3. Let (�; u(�)) be a PPE payo¤ sustained by pure strategy in period 1. Let (�s; us)

and (�n; un) be the continuation payo¤s following the shock and no shock state respectively. Then

us = u(�s)

and

un = u(�n):
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The key reason for the lemma above is that the actions of the agent can be perfectly observed.

This implies that any deviation from the agent is publicly known. Along any equilibrium path, no

public deviation can occur, and, thus, the agent has not deviated. Therefore, optimal PPE should

not destroy surplus along the equilibrium path to punish the agent. In other words, in an optimal

PPE the agent�s payo¤ following any equilibrium path always lies on the PPE payo¤ frontier.

This result is common in repeated games in which one party�s action is perfectly observed; see for

example Levin (2003) and Fong and Li (2010). In general repeated games with imperfect public

monitoring, however, payo¤ can fall below the PPE payo¤ frontier when no player can guarantee

that he has not deviated along the equilibrium path; see for example Green and Porter (1984),

Athey and Bagwell (2001).

The previous lemmas establish that, to characterize the payo¤ frontier to the right of �0; it

su¢ ces to specify e¤ort e; bonus levels bs, and bn, and continuation payo¤s of the principal �s

and �n: To simplify our analysis of the payo¤ frontier, we now proceed to eliminate the redun-

dant constraints associated with the PPE payo¤s. We start with the constraints associated with

feasibility.

Feasibility By combining ICN and ICS, we have

(1 + �) (1� �) (bn � bs) � � (�n � �s) � (1� �) (bn � bs):

This implies as long as these two constraints are satis�ed, we must have

bn � bs:

Consequently, the non-negativity constraint on bn is automatically satis�ed when the non-negativity

constraints are satis�ed.

For the continuation payo¤s to be feasible, it su¢ ces that the principal�s continuation payo¤s

can be supported as a PPE payo¤ since the agent�s payo¤ is always on the PPE payo¤ frontier. In

other words, the feasibility constraints of the continuation payo¤s are

� � �s � �;

� � �n � �:

Note that �n � �s because bn � bs: Therefore, the constraints above can be reduced to � � �s

and �n � �: Note that � � �s is implied by RCS and the non-negativity of bs: Therefore, the only
non-redundant constraint here is

�n � �: (Self-enf)
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No Deviation Next, we examine the constraints associated with No Deviation. It is clear ICW

is automatically satis�ed by the de�nition of the payo¤ frontier and that u > 0: To eliminate more

constraints, we �rst establish below the familiar result that ICN is satis�ed with equality.

LEMMA A4.

� (�n � �s) = (1� �) (bn � bs): (ICN)

Once ICN is satis�ed with equality, we see that ICS is automatically satis�ed since bn � bs. In
addition, RCN becomes redundant once RCS is satis�ed. To see this, note that

��n � �� = ��n � �� + (1� �) (bn � bs)

� (1� �) (1 + �) bs + (1� �) (bn � bs)

� (1� �) bn;

where the equality is equality follows from the lemma above, the �rst inequality uses RCS, and the

second inequality uses the non-negativity of bs:

Promise-Keeping For the promise-keeping constraints, we make the following changes. First,

we solve the promise keeping constraint for the principal PKF for the no shock bonus bn and then

substitute into the ICN constraint. Doing so we obtain

� = (1� �) y (e) + ��s � (1� �) (1 + ��) bs: (ICN)

Second, we replace the promise-keeping constraint of the agent with a promise-keeping constraint

of the value of the relationship. In particular, by adding up the promise-keeping constraints of the

principal and the agent, we obtain

� + u(�) = (1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��bs:

The left hand side of the equation is the value of the relationship. The right hand side decomposes

the value into the weighted average of those generated by the stage game and those from the future.

By the de�nition of the payo¤ frontier, any choice of feasible actions and continuation cannot

generate value that exceeds � + u(�): Therefore, the value of an optimal relational contract must

satisfy the following:

� + u(�) = max
e;bs;�s;�n

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��bs
(1)
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such that

� = (1� �) y (e) + ��s � (1� �) (1 + ��) bs: (ICN)

��s � �� � (1� �) (1 + �) bs: (RCS)

bs � 0; (NegS)

e � 0: (Nege)

�n � �: (Self-enf)

4.3 Key Features of the Payo¤ Frontier

In this subsection, we state and discuss some key features of the payo¤ frontier. Our discussion

here focuses on the intuitions. A formal treatment can be found in the appendix. In particular, we

show that the payo¤ frontier is di¤erentiable everywhere.

LEMMA 1. The slope of the payo¤ frontier u (�) satis�es

du (�)

d�
> �1 for all � 2 [�; �] .

An increase in expected pro�ts by one dollar therefore reduces the worker�s payo¤ by less than

a dollar and thus increases joint surplus. Essentially, an increase in expected pro�ts relaxes the

ICN constraint and thus allows for an increase in e¤ort e, or a reduction in the ine¢ cient bonus bs,

or both.

The next lemma provides a su¢ cient condition under which �0 = �, that is, all payo¤s on the

payo¤ frontier can be sustained by pure strategies. Moreover, it shows that when that condition

is satis�ed, the payo¤ frontier is everywhere downward sloping and thus maximized at �. To state

the next and subsequent lemmas, let the pro�t level at which the u (�) is maximized be denoted

by �m, where the subscript stands for "maximum."

LEMMA 2. Suppose that the magnitude of the shock � is large relative to its frequency �, in the

sense that

� � �

1� � : (A)

Then (i.) all payo¤s on the payo¤ frontier can be sustained by pure strategies; in other words,

�0 = �. And (ii.), the payo¤ frontier is everywhere strictly downward sloping, that is, u0 (�) < 0

for all � 2 [�; �]. The payo¤ frontier is therefore maximized at �, that is, �m = �.
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5 Characterizing the Optimal Relational Contract

In this section we characterize the optimal relational contract. We do so �rst for the case in

which Condition A is satis�ed. Recall from the previous section that all payo¤s on the payo¤

frontier can then be sustained by pure strategies. The optimal relational contract is therefore fully

characterized by the solution to the maximization problem (1). Once we have characterized the

optimal relational contract when Condition A is satis�ed, we turn to the case in which Condition

A is not satis�ed. While the optimal relational contracts are very similar in both cases, they are

more easily described sequentially.

5.1 The Optimal Relational Contract When Condition A Holds

Consider �rst a period in which the �rm expects to make pro�ts � 2 [�; �]. We already observed
that the optimal bonus in a shock period b�s (�) is weakly smaller than the optimal bonus in a no

shock period b�n (�). The �rm therefore always has a temptation to claim to have been hit by a

shock, even when it has not been. To ensure that the �rm does not succumb to this temptation,

the optimal relational contract rewards the �rm whenever it does not claim to have been hit by a

shock. In particular, the next lemma shows that if � < � and the �rm pays b�n (�), its expected

pro�ts increase to � at the beginning of the next period. And if expected pro�ts are already at

their upper bound � = �, they will stay there.

LEMMA 3. The optimal continuation pro�t in a period without a shock is given by

��n = � for all � 2 [�; �] .

In addition to getting rewarded whenever it does not claim to have been hit by a shock, the

�rm also gets punished whenever it does claim to have been hit by a shock. In particular, the next

lemma shows that if � > � and the �rm only pays b�s (�), its expected pro�ts decline to �
�
s (�) < �

at the beginning of the next period. And if expected pro�ts are already at their lower bound

� = �, they will stay there.

LEMMA 4. The the optimal continuation pro�t in a period with a shock is given by

��s (�) = � and ��s (�) < � for all � > �:

Since the optimal relational contract uses both carrots and sticks to induce the �rm to be

truthful, expected pro�ts cycle over time. Consider, for instance, Figure 2 which charts expected
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pro�ts for an arbitrarily chosen sequence of shock and no shock periods. In the �gure red squares

indicate periods in which the �rm has been hit by a shock and blue dots indicate periods in which

the �rm has not been hit by a shock. The �gure illustrates that consecutive shock periods lead

to a gradual reduction in expected pro�ts until, after a su¢ ciently large number of consecutive

shocks, expected pro�ts bottom out at �. At any point, however, it only takes a single no shock

period for expected pro�ts to return to their upper bound �. Expected pro�ts therefore cycle over

time and they do so asymmetrically, with downturns being gradual and recoveries instantaneous.

Moreover, since the relationship never terminates, the cycles never end.

It is intuitive that the �rm gets punished whenever it claims to have been hit by a shock and only

pays the worker b�s (�). The next question, however, is how this punishment should be implemented.

Since the relationship between the �rm and the worker never terminates, punishment never takes

the form of an increase in the probability of termination. Instead, the �rm gets punished for only

paying b�s (�) by having to reallocate some of its future pro�ts to the worker. This, of course,

is in line with our previous observation that the payo¤ frontier is everywhere downward sloping.

A reduction in expected pro�ts � therefore implies an increase in the worker�s rents u (�) � u.
Essentially, the worker will always accept a relatively small bonus payment b�s (�) but in return the

�rm has to promise him higher rents in the future.

The next question then is how the �rm should increase the worker�s future rents. In principle,

there are three ways in which the �rm could do so: it could pay the worker a larger bonus in

a future no shock period, it could pay him a larger bonus in a future shock period, or it could

keep the bonuses constant but allow the worker to provide less e¤ort in some future period. The

most e¢ cient way to increase the worker�s future rents is of course the �rst one, that is, to pay the

worker a larger bonus in a future no shock period. Since the ICN constraint is always binding,

however, an increase in a future no shock bonus alone is not incentive compatible. To see this,

suppose, that whenever the �rm is hit by a shock, it does not pay the worker and the worker

does not reduce his e¤ort; instead, the �rm simply promises him a larger bonus in the next no

shock period. Such a punishment strategy would be e¢ cient but not e¤ective, since the �rm could

avoid any punishment by simply never paying a bonus. To be credible, the promise to increase

the worker�s future rents therefore has to involve a reduction in e¤ort or an increase in ine¢ cient

bonus payments. Essentially, the �rm can always claim to have been hit by a shock and only pay

the worker b�s (�), provided that it promises the worker higher rents in the future. This promise,

however, constrains the �rm�s ability to operate e¢ ciently in the future; in particular, it limits the

�rm�s ability to motivate the worker and may force it to make ine¢ cient bonus payments. These
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future ine¢ ciencies that are what we call the "burden of past promises."

To understand how the �rm increases the worker�s future rents, consider �rst e� (�), the worker�s

optimal e¤ort in a period in which the �rm expects to make pro�ts �. We characterize e� (�) in

the next lemma.

LEMMA 5. Optimal e¤ort e� (�) satis�es

0 < e� (�) < efb for all � 2 [�; �] .

where efb is �rst best e¤ort. Moreover, e� (�) is weakly increasing in � and satis�es

e� (��s (�)) < e
� (�) for all ��s (�) < �.

If the �rm only pays b�s (�) this period, and expected pro�ts are not yet at their lower bound

�, the worker will therefore provide strictly less e¤ort in the next period. And if the �rm only

pays b�s (�) in consecutive periods, e¤ort continues to decline until it bottoms out at e
� (�). The

�rm�s punishment for a small bonus payment is therefore not delayed to some far o¤, future period.

Instead, the punishment starts in the next period and continues until the next time the �rm is not

hit by a shock and pays the optimal no shock period b�n (�).

Notice also that minimum e¤ort e� (�) is strictly positive. The worker therefore always provides

some e¤ort, even if the �rm has been hit by an arbitrarily large number of consecutive shocks. At

the same time, e¤ort always falls short of �rst best, even if the �rm and the worker are very patient.

We elaborate on the failure to achieve �rst best in Section 5.1.

Consider next the optimal bonus b�s (�) that the �rm pays to worker in a period in which it

expects to make � and is then hit by a shock. The next lemma provides a necessary and su¢ cient

condition for the �rm to never pay a bonus in a shock period.

LEMMA 6. Let e > 0 denote the e¤ort level for which y (e) = �. Then the optimal bonus in a

shock state b�s (�) is equal to zero for all � 2 [�; �] if and only if

c0(e)

y0(e)
� 1� � (1� �)

1 + ��
: (B)

Condition B is more likely to be satis�ed the larger the magnitude of the shock � relative to

its frequency � and relative to the �rm�s outside option �. We therefore have the intuitive result

that the �rm never pays a bonus in a shock state if the opportunity costs are su¢ ciently large.
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The Optimal Relational Contract Does Not Involve Ine¢ cient Bonus Payments Sup-

pose �rst that Condition B holds so that the optimal relational contract does not involve ine¢ cient

bonus payments. We can then complete the characterization of the optimal relational contract by

substituting ��n (�), �
�
s (�), and b

�
s (�) into the ICN constraint to obtain the optimal bonus in a no

shock period.

LEMMA 7. Suppose that Condition B holds. Then the optimal bonus in a period without a shock

is given by

b�n (�) =
�

1� � (� � �
�
s (�)) :

If the �rm does not pay a bonus this period, and if expected pro�ts are not yet at their lower

bound �, the �rm therefore has to pay a larger bonus in the next no shock period. And if the �rm

does not pay a bonus in consecutive periods, the optimal no shock bonus increases until it tops

out at its upper bound b�n (�). The punishment for not paying a bonus therefore involves both an

immediate reduction in e¤ort and an immediate increase in the next no shock bonus. And this

punishment continues until the next time the �rm is not hit by a shock and pays the optimal no

shock bonus. The evolution of e¤ort and the no shock bonus are also illustrated and summarized

in Figure 3. The �gure charts e� (�) and b�n (�) for the same, arbitrarily chosen, sequence of shock

and no shock periods as Figure 2. Once again, red squares indicate periods in which the �rm has

been hit by a shock and blue dots indicate periods in which the �rm has not been hit by a shock.

The �gure shows that b�n (�) follows the same cycles as expected pro�ts � and that the evolution

of e� (�) mirrors that of b�n (�).

We can now establish our �rst proposition which characterizes the optimal relational contract.

PROPOSITION 1. Suppose that Conditions A and B hold. Then the optimal relational contract

is characterized by Lemmas 3 � 5 and 7.

In summary, when Conditions A and B hold, the optimal relational contract has four key

characteristics. First, consecutive shock periods lead to a gradual reduction in pro�ts and a gradual

increase in the worker�s rents. Essentially, the �rm can always choose not to pay the worker a

bonus, and thus implicitly claim to have been hit by a shock, but if it does so, it also has to promise

him higher rents in the future. Second, the �rm increases the worker�s future rents through both

e¢ cient means � by increasing the bonus in the next no shock period � and ine¢ cient means � by
allowing the worker to provide less e¤ort until the next no shock period. The failure to pay a bonus

therefore limits the �rm�s ability to operate e¢ ciently in the future. Third, in a period without

a shock the �rm pays the worker the promised bonus; expected pro�ts then return to their upper
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bound � and the worker�s rents go to zero. Relationship dynamics are therefore characterized

by sluggish downturns but instantaneous recoveries. Finally, the relationship never terminates.

Instead, after su¢ ciently many consecutive shock periods, e¤ort bottoms out at e� (�) > 0 and the

no shock bonus tops out at its maximum level b�n (�). Pro�ts are then at their minimum level � and

the worker�s rents are at their maximum level u (�)� u. Even after arbitrarily many consecutive
shock periods, however, it only takes a single no shock period for expected pro�ts to return to �.

The Optimal Relational Contract Does Involve Ine¢ cient Bonus Payments Suppose

now that Condition B does not hold so that the optimal relational contract does involve ine¢ cient

bonus payments. In the next lemma we characterize b�s (�).

LEMMA 8. Suppose that Condition B does not hold. Then there exist three pro�t levels �1, �2,

�3 that satisfy � � �1 < �2< �3 < � such that (i.) the optimal bonus b�s (�) that the �rm pays

in a shock period is strictly positive if and only if � 2 (�1; �3). And, (ii.), when b�s (�) is strictly

positive it is non-monotonic in �; in particular

db�s (�)

d�
> 0 for all � 2 [�1; �2] and

db�s (�)

d�
< 0 for all � 2 [�2; �3] :

The lemma is illustrated in Figure 4 which charts b�s (�) for the same, arbitrarily chosen sequence

of shock and no shock periods as Figure 2 and 3. Once again, red squares indicate shock periods and

blue dots indicate no shock periods. The �gure shows that if expected pro�ts are su¢ ciently large,

the �rm does not pay a bonus in a shock period. If, however, the �rm is hit by su¢ ciently many

consecutive shocks � and expected pro�ts are therefore su¢ ciently small � the �rm does have to

pay a bonus even if it is hit by a shock. Initially, additional shocks then lead to a gradual increase

in the shock state bonus. Eventually, however, eventually, however, further shocks actually reduce

the shock state bonus until it reaches b�s (�) � 0; where it stays until the �rm reaches a period in

which it is not hit by a shock.

To understand the evolution of b�s (�), recall that the production function is characterized by

decreasing returns to scale. As the �rm is hit by consecutive shocks, therefore, e¤ort reductions

become an increasingly ine¢ cient way of increasing the worker�s rents. If the magnitude of the

shock � is su¢ ciently small � so that Condition B does not hold � the �rm then limits further

e¤ort reduction by promising to pay the worker even if it is hit by a shock. Initially, the shock

state bonus is su¢ ciently small that the reneging constraint RCS is not binding. If the �rm is

hit by su¢ ciently many consecutive shocks, however, the shock state shock state bonus becomes

su¢ ciently large for the RCS constraint to become binding. As a result, the shock state bonus

actually decreases, as the �rm is hit by additional shocks.
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Having determined the optimal bonus in a shock period, we can once again complete the char-

acterization of the optimal relational contract by working out the optimal bonus in a shock state.

To so, we simply substitute ��n (�), �
�
s (�), and b

�
s (�) into the ICN constraint to obtain the following

lemma.

LEMMA 9. Suppose that Condition B does not hold. Then the optimal bonus in a no shock period

is given by

b�n (�) = b
�
s (�) +

�

1� � (� � �
�
s (�)) :

The next proposition summarizes the characterization of the optimal relational contract when

Condition B does not hold.

PROPOSITION 2. Suppose that Condition A holds but that Condition B does not. Then the

optimal relational contract is characterized by Lemmas 3 - 5, 8, and 9.

In summary, whether or not Condition B is satis�ed, the relationship dynamics are essentially

the same. The only di¤erence is that if Condition B is not satis�ed, and expected pro�ts are

su¢ ciently small, the �rm has to pay a bonus even if it has been hit by a shock.

5.2 The Optimal Relational Contract When Condition A Does Not Hold

So far we have focused on situations in which Condition A is satis�ed, that is, we focused on

situations in which

� � �

1� � ; (A)

where � is the magnitude of the shock and � its frequency. We now discuss the optimal relational

contract when Condition A is not satis�ed and argue that it is very similar to the one described

above. We discuss the optimal relational contract informally and relegate the formal analysis to

the Appendix.

Recall that when Condition A holds, the payo¤ frontier is everywhere downward sloping. This

does not need to be the case when Condition A does not hold. In particular, the payo¤ frontier

may then be maximized at an interior �m 2 (�; �) and thus be upward sloping for � < �m. Since
the payo¤ frontier is upward sloping for � < �m, equilibria in which �rst period pro�ts are strictly

less than �m are Pareto dominated by the equilibrium in which in the �rst period pro�ts are equal

to �m and the worker�s payo¤ is equal to u(�m). We therefore focus on equilibria in which �rst

period payo¤s are given by � and u (�), where � � �m. We will see below the for any such

equilibrium, pro�ts remain larger than �m at the beginning of every subsequent period. Also, for

any such equilibrium, payo¤s can be sustained by pure strategies.
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Suppose then that the �rm and the worker coordinate on an equilibrium in which �rst period

payo¤s are given by � and u (�), where � � �m and �m 2 [�; �). In contrast to the previous section,
the optimal relational contract now depends on the level of �rst period pro�ts. In particular,

the optimal relational contract depends on whether �rst period pro�ts are above a critical value

�a 2 [�m; �), where, for reasons that will become apparent shortly, the subscript "a" stands for
"absorbing."

If the �rm and the worker do coordinate on an equilibrium in which �rst period pro�ts are

weakly larger than �a, the optimal relational contract is very similar to the one discussed in the

previous section. Indeed, the only substantive di¤erence then arises when the �rm has been hit

by a large number of consecutive shocks. Recall that if Condition A is satis�ed and the �rm is

hit by a large number of consecutive shocks, pro�ts bottom out at the lowest feasible level �. If

Condition A is not satis�ed, pro�ts instead bottom out at �a � �. In any equilibrium in which

�rst period pro�ts are weakly larger than �a, pro�ts therefore remain weakly larger than �a at the

beginning of every subsequent period. With this exception, the optimal relational is qualitatively

identical to the one described in the previous section.

If the �rm and the worker instead coordinate on an equilibrium in which �rst period pro�ts are

strictly smaller than �a (but, for the reasons discussed above, still larger than �m), the optimal

relational contract is somewhat di¤erent from the one described in the previous section. Pro�ts

then always increase initially, whether or not the �rm has been hit by a shock. And they continue

to increase until pro�ts are larger than �a. Once pro�ts are larger than �a, however, the optimal

relational contract plays out in exactly the same way as described in the previous paragraph. Once

pro�ts are larger than �a, therefore, pro�ts never fall below �a again. Except for the initial increase

in pro�ts, and the fact that pro�ts never fall below �a, the optimal relational contract is identical

to the one described in the previous section.

6 Discussion

In this section we revisit a few of the key features and assumptions our model and examine them

in more detail.

6.1 The Inability to Achieve First Best

A notable feature of the optimal relational contract is that it is always ine¢ cient. In other words,

�rst best can never be sustained, even when the �rm and the worker are very patient and when

shocks are rare and small. At �rst this may be somewhat surprising since only the �rm has private

22



information � and may thus need to be punished on the equilibrium path � and since the �rm can

be punished e¢ ciently by having to make payments in no shock periods in which its opportunity

costs are low. The reason why the optimal relational contract is always ine¢ cient is that the

worker can never be sure that the �rm�s opportunity costs are low. The �rm can therefore always

avoid an e¢ cient punishment that only calls for higher payments in a future no shock period by

falsely claiming that it has not been hit by a shock.

To see this, suppose that whenever the �rm is not hit by a shock, there is some probability

p 2 (0; 1) with which it becomes publicly known that the �rm�s opportunity costs are indeed low.5

In the Appendix, we show that �rst best can then be achieved for su¢ ciently high discount rates.

In this setting, whenever the �rm is hit by a shock, it does not pay the worker a bonus but promises

him a bigger bonus in the next period in which it is publicly known that its opportunity costs are

low. There is then no need to punish the �rm ine¢ ciently, by reducing e¤ort or increasing bonus

payments in shock periods.

While public information about low opportunity costs may allow the �rm and the worker to

sustain �rst best, public information about high opportunity costs do not. To see this, suppose

that whenever the �rm is hit by a shock, there is some probability q 2 (0; 1) with which it becomes
publicly known that the �rm�s opportunity costs are indeed high. In the Appendix we show that

�rst best can then still not be achieved. Essentially, while public information about low opportunity

costs allows the �rm to be punished e¢ ciently, public information about high opportunity costs

does not. An important implicit assumption in our setting is therefore that the worker can never

prove that the �rm�s opportunity costs are low. In contrast, the assumption that the �rm can

never prove that its opportunity costs are high is less important.

6.2 The Public Information Benchmark

Our model has two key ingredients: asymmetric information and the lack of formal contracts.

Without either ingredient, the relationship between the �rm and the worker would develop very

di¤erently from the way described above. To see this, we now compare the optimal relational

contract in our setting to what it would be if shocks were publicly observed. And in the next

section we then compare the optimal relational contract to the contract that the �rm and the

worker would agree to if formal contracting were feasible.

Suppose that shocks are publicly observed. And to facilitate the exposition, suppose that the

5 If p = 0, the model is the same as the one that we examined in the previous section. And if p = 1 the occurance
of the shock is publicly observed and there is no need for the �rm to be punished on the equilbrium path. We discuss
this public information benchmark in Section Z.
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�rm simply cannot pay the worker in a shock period, that is, suppose that � ! 1. Proposition

Z in the Appendix then characterizes the optimal relational contracts for any �rst period payo¤s

that are on the payo¤ frontier. For any �rst period payo¤s that are on the payo¤ frontier there

may now be multiple relational contracts that are optimal. Whenever there are multiple relational

contracts that are optimal, however, they induce the same e¤ort level and thus generate the same

joint surplus. We therefore do not lose any insight by focusing on one speci�c relational contract

that is optimal, as we do next. In that contract, the �rm�s pro�ts always weakly increase over

time. In particular, for any pro�t level � 2 [�; �], the continuation pro�ts are given by �n = �

and �s (�) = �. Moreover, e¤ort e (�) is strictly increasing in � unless it is already at its �rst

best level, in which case further increases in � have no e¤ect on e¤ort. Pro�ts, e¤ort, and joint

surplus therefore increase over time until they reach their highest feasible levels. If the �rm and

the worker are patient enough, those highest feasible levels are equal to �rst best and otherwise

they are strictly below �rst best. In either case, once pro�ts, e¤ort, and joint surplus are at their

highest feasible levels, they stay there forever.

Relationship dynamics are therefore very di¤erent when shocks are publicly rather than privately

observed. Essentially, when shocks are publicly observed, time is your friend: pro�ts, e¤ort, and

joint surplus increase over time until they reach their largest levels and then stay there inde�nitely.

In contrast, when shocks are privately observed, time may be your foe: whenever pro�ts, e¤ort,

and joint surplus have reached their highest levels, they are certain to decrease again, at least

temporarily.

We can also interpret our model as a trust game in which the worker�s e¤ort is a measure of the

degree to which he trusts the �rm. The model with publicly observed shocks then captures the

intuition that relationships get better over time because it takes time to build trust. In contrast,

when shocks are privately observed, relationships may get worse over time because the burden of

past promises erodes trust. In principle, these di¤erent predictions about how relationships evolve

are testable in an experimental setting.

6.3 The Full Contracting Benchmark

Suppose next that the �rm can commit to a formal contract. In particular, suppose that in any

period t the �rm �rst observes the state �t 2 fn; sg � that is, it observes whether it has been

hit by a shock or not � and then makes an announcement mt 2 fn; sg about the state. Suppose

also that before the �rst period, the �rm can commit to a contract that, for any period t, maps its

announcements (m1;m2,...;mt) into the bonus bt that the �rm has to pay the worker at the end of
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period t. In this section we show that the optimal contract in this setting induces very di¤erent

behavior than the optimal relational contract in our setting.

Notice �rst that even if the �rm can commit to a formal contract, the �rm and the worker

cannot achieve �rst best. To achieve �rst best, the contract would have to induce the worker to

always provide �rst best e¤ort. At the same time, the contract require the �rm to only pay the

worker when it admits to not having been hit by a shock. Naturally, the �rm would then never

admit to having been hit by a shock.

While formal contracting does not allow the �rm and the worker to achieve �rst best, it does

allow them to come arbitrarily close to achieving �rst best. To see this, let �(t) denote the number

of consecutive periods immediately preceding t in which the �rm did not pay the worker. So, for

instance, if we were currently in period ten and the �rm did not pay the worker in period nine but

did pay him in period eight, then � (10) = 1. Now consider a contract with three features. First,

the contract asks the worker to always provide �rst best e¤ort. If the worker ever does not provide

�rst best e¤ort, the �rm will never again pay him. Second, the contract speci�es that if, in period

t, the �rm announces that it has not been hit by a shock, it pays the worker a bonus

bt =

�
1 +

1

�
+
1

�2
+ :::+

1

��(t)

�
(u+ c (efb)) :

Third, the contract speci�es a number T � 1 that determines how much the �rm has to pay the

worker whenever it announces that it has been hit by a shock. In particular, if, in period t, the

�rm announces that it has been hit by a shock and if �(t) < T , then the �rm does not have to pay

the worker. If, however, �(t) = T , then the �rm has to pay the worker

bt =

�
1 +

1

�
+
1

�2
+ :::+

1

�T

�
(u+ c (efb)) :

Proposition LT1 in the Appendix shows that under such a contract, the worker always provides

�rst best e¤ort and the �rm always announces the state truthfully. Essentially, under this contract

the �rm will have to pay the worker (u+ c (efb)) per period, independent of its announcements.

In other words, while the �rm�s announcements may a¤ect the timing of payments, they do not

a¤ect their net present value. Faced with this contract, it is therefore an optimal response for the

�rm to truthfully reveal the state.

The problem with this contract, of course, is that it induces ine¢ cient bonus payments whenever

the �rm is hit by shocks for T consecutive periods. Notice, however, that the �rm and the worker

can reduce this ine¢ ciency by agreeing to a larger T . In fact, the �rm and the worker can come

arbitrarily close to �rst best by agreeing to an arbitrarily large T . The optimal formal contract
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therefore induces very di¤erent behavior than the optimal relational contract. In summary, both

asymmetric information and the lack of formal contracts are therefore crucial for the relationship

dynamics that are predicted by our model.
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7 What Happens if the Firm is Liquidity Constrained?

So far we have assumed that the �rm can always pay the worker any bonus it wants to, even if its

opportunity costs of doing so may be high. In other words, we have assumed that the �rm is not

liquidity constrained. We now relax this assumption. Doing so sheds more light on what drives

some of the key features of optimal relational contract that we described above. It also modi�es

the optimal relational contract in ways that are consistent with some of the anecdotal evidence in

the Introduction.

Speci�cally, we now make two changes to our model. First, we now assume that the �rm

simply cannot pay the worker in a shock period, that is, we assume that � is equal to in�nity.

We make this assumption for simplicity. Second, we now assume that if the �rm realizes output

y (e) and is not hit by a shock, it can pay the worker at most (1 +m) y (e), where the parameter

m � 0 captures the extent to which the �rm is liquidity constrained. Moreover, we assume that

the liquidity constraint is binding when expected pro�ts � are at their lower bound �. If this were

not the case, the liquidity constraint would never be binding and the optimal relational contract

would be the same as the one described above.

In what follows we summarize the key features of the optimal relational contract that we derive

formally in the Appendix. Recall that �0 denotes the largest pro�t � such that for all � � �0, the
payo¤s on the payo¤ frontier can be sustained by pure strategies. We saw above that when the

�rm is not liquidity constrained and � is su¢ ciently large, then �0 = �. When the �rm is liquidity

constrained, in contrast, it can be the case that �0 > � even when �!1. We return to this case
at the end of the section but for now we focus on the optimal relational contract when �0 = �.

In that case, the optimal relational contract is fully described by the optimal continuation pro�ts

��s (�) and �
�
n (�), the optimal no shock bonus b

�
n (�), and optimal e¤ort e

� (�).

Consider �rst a period in which the �rm expects to make pro�ts � 2 [�; �] and is then hit by
a shock. Tomorrow�s expected pro�ts will then be strictly smaller than today�s, unless today�s

expected pro�ts are already at their lower bound �, in which case they stay there. In other words,

��s (�) < � if � > � and ��s (�) = �. As in the model without liquidity constraints, therefore,

consecutive shock periods lead to a gradual reduction in expected pro�ts until they reach their

lower bound �. And once expected pro�ts have reached their lower bound �, they stay there until

the next no shock period.

Next, consider a period in which the �rm expects to make pro�ts � 2 [�; �] and is not hit
by a shock. Tomorrow�s expected pro�ts will then be strictly larger than today�s, unless today�s

expected pro�ts are already at their upper bound �, in which case they stay there. In other words,

27



��n (�) > � if � < � and ��n (�) = �. As in the model without liquidity constraints, therefore,

consecutive no shock periods increase expected pro�ts until they reach their upper bound � after

which they stay there. In contrast to the model without liquidity constraints, however, it may

now take more than one no shock period for expected pro�ts to reach their upper bound �. In

particular, we now have that ��n (�) < � if � < �1 and �
�
n (�) = � otherwise, where �1 2 (�; �) is

de�ned in the Appendix. If pro�ts are su¢ ciently small, therefore, it takes at least two consecutive

no shock periods for expected pro�ts to reach �. Essentially, for the worker to agree to move to

the equilibrium in which expected pro�ts are maximized, the �rm has to compensate him for the

corresponding loss in the his rents. If the �rm is not liquidity constrained, it can compensate the

worker with a single, large bonus payment. But if the �rm is liquidity constrained, it may have to

spread the bonus payment over multiple periods. In summary, while recoveries are instantaneous

in the absence of liquidity constraints, they can be sluggish when the �rm is liquidity constrained.

Together the two continuation pro�ts that we characterized in the previous two paragraphs de-

termine the optimal no shock bonus. In particular, substituting ��s (�) and �
�
n (�) into the ICN con-

straint and making use of the fact that b�s (�) = 0, we get that (1� �) b�n (�) = � (��n (�)� ��s (�)).
Whenever the liquidity constraint is binding, therefore, a reduction in expected pro�ts may lead to

a reduction in the optimal no shock bonus.

Finally, consider e� (�), the worker�s optimal e¤ort in a period in which the �rm expects to make

pro�ts � 2 [�; �]. In the absence of liquidity constraints, a reduction in expected pro�ts always

leads to a reduction in e¤ort. In contrast, when the �rm is liquidity constrained, a reduction

in expected pro�ts can actually lead to an increase in e¤ort. The reason is that an increase in

e¤ort now has the additional bene�t of relaxing the liquidity constraint. A reduction in expected

pro�ts may therefore require an increase in e¤ort to ensure that the �rm can pay the worker a

larger bonus in the next no shock period. This is in line with the example of Lincoln Electric

in the Introduction. There management responded to a reduction in pro�ts, and the resulting

inability to pay the workers their bonus, by asking those workers to work even harder. And the

workers agreed to work even harder because they understood that this would allow Lincoln Electric

to pay them their next bonus. Speci�cally, we now have that e� (�) is strictly decreasing in � if

� 2 [�1; �2], where �2 2 [�1; �] is de�ned in the Appendix. There we also provide a su¢ cient

condition for this region to exist, that is, for �2 > �1. When this region does exist and pro�ts

are within this region, the �rm is liquidity constrained but ��n (�) is still at its upper bound �. If,

instead, � > �2, the liquidity constraint is not binding and e� (�) in increasing in �, just as in the

main model. And, �nally, if � < �1 the e¤ect of an increase in � on e� (�) is ambiguous. In
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summary, while a reduction in expected pro�ts always leads to a reduction in e¤ort in the absence

of liquidity constraints, a reduction in expected pro�ts can lead to an increase in e¤ort when the

�rm is liquidity constrained.

So far we have focused on the case in which termination is not part of the optimal relational

contract, that is, we have focused on the case in which �0 = �. To conclude this section, suppose

instead that �0 > �. For any � 2 [�0; �] the optimal relational contract is then essentially same
as the one described in the last four paragraphs. The only important di¤erence is that after

su¢ ciently many consecutive shock periods expected pro�ts will now be strictly below �0. And

once expected pro�ts are strictly below �0, the �rm and the worker randomize between separating

and playing the pure strategies that deliver the payo¤s �0 and u (�0). At this point, even if

the �rm and the worker are lucky and do not have to separate immediately, they are certain to

separate if they are hit by another shock in the next period. This is so since ��s (�0) = �. The

relationship is therefore certain to terminate after a �nite number of consecutive shocks. This, of

course, is in contrast to optimal relational contract without liquidity constraints which never calls

for termination when � is su¢ ciently large and, in particular, when � ! 1. To understand this

di¤erence, recall that when the �rm is liquidity constrained and hit by a number of consecutive

shocks, the continuation pro�ts in the next no shock period ��n (�) are very low. The �rm�s reward

for admitting to not having been hit by a shock is therefore very limited. To induce the �rm to

still be truthful, the worker therefore needs to increase the punishment for claiming to have been

hit by a shock. And when pro�ts are already very small, the only way to do so is to increase the

threat of termination.

In summary, allowing for the �rm to be liquidity constrained changes the optimal relational

contract in three main ways. First, recoveries can now be sluggish rather than instantaneous.

Second, the failure to pay the worker a bonus can now lead to more e¤ort rather than less. And

third, termination can now be part of the optimal relational contract even when � is very large.

8 Conclusion

Sustaining successful relationships is di¢ cult in a changing and opaque world. Actions that create

value can nevertheless destroy trust. This paper studies how to best structure relational contracting

in the presence of incomplete information and explores its implications on the dynamics of the

relationship. We develop a relational contracting model between a worker and a �rm who is privately

informed about shocks to its cost of transfer. We show that the e¢ ciency of the relationship is

bounded away from the �rst-best level. More e¢ cient actions in the current time � lower bonus
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payment when the transfer is costly �come at the cost of ine¢ cient actions in the future - lower e¤ort

from the worker for example. The value of the relationship cycles over time, exhibiting sluggish

downturns and immediate recovery. When the �rm is also liquidity constrained, the e¢ ciency of

the relationship can take longer to recover. More interestingly, the worker may increase his e¤ort

after a shock state, gambling for more bonuses in the near future. But such gambles can lead to

the demise of the relationship in the long run.

We have cast the model in the context of a �rm-worker relationship. The main ingredients of

the model� repeated interaction, limited commitment, and hidden information� are also relevant

to many other important economic environments. One example is the lending relationship between

an entrepreneur and a bank. The entrepreneur can have hidden information of his marginal value

of money, and the bank can adjust its future terms of lending based on the past payment history

of the entrepreneur. Another example is the informal insurance relationships among farmers in

developing countries. There�s some evidence that the farmer�s income is hidden information, see

for example, Kinnan (2010). While most of the literature has focused on moral hazard or insurance

issues separately in this context, our model suggests that these issues are related since insurance

decisions a¤ect future production choices. Further research in this area is needed.

9 Appendix

9.1 PPE Payo¤s

This part of the appendix provides the necessary technical background for deriving the main results.

The key result in this subsection is that the PPE payo¤ is di¤erentiable for all � 2 [�; �].

LEMMA A1: Let � be the maximum PPE payo¤ of the principal. The PPE payo¤ set E is

given by

E = f(�0; u0) : �0 2 [�; �]; u0 2 [u; u(�0)]g:

In addition, u is concave, and

u(�) = u:

Proof. First, note that the payo¤ pair (�; u) (meaning that the principal�s normalized expected

payo¤ is � and the agent�s normalized expected payo¤ is u ) is in the PPE payo¤ set. This payo¤

is supported by the equilibrium in which on the equilibrium path, the principal and the agent does

not start a relationship, and o¤ the equilibrium path, the agent puts in e¤ort e = 0, the principal
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always pay bs = bn = 0; and both the principal and the agent does not the start the relationship

in the future.

Second, to see that u(�) = u; suppose to the contrary that u(�) > u: Since (�; u(�)) is an

extremal point of the PPE, it is sustained by pure strategy in period 1. Let e(�) be the agent�s

e¤ort associated with � in period 1: Now modifying this equilibrium strategy by increasing e(�) to

e(�) + " for small enough " and keep everything else the same. This change results a strategy that

is also a PPE. But the new PPE gives the principal a higher payo¤ than �: This contradicts the

de�nition of �:

Now the availability of the public randomization device implies that any payo¤ on the line

segment between (�; u) and (�; u) can be supported as a PPE payo¤. It then follows that any payo¤

(�; u0) can be obtained from the randomization between (�; u) and (�; u(�)) for all u0 2 [u; u(�)]:
The concavity of u follows directly from the availability of the public randomization device. Finally,

it is clear that any PPE payo¤ pair must give the principal at least � and the agent at least u: This

�nishes the proof.

LEMMA A2: There exists a �0 such that for all � 2 [�0; �]; u(�) can be sustained by pure
strategy.

Proof. It su¢ ces to show that for any �1 < �2; if both u(�1) and u(�2) are sustained by pure

strategies (other than taking the outside option), then for every � 2 (�1; �2); u(�) can be sustained
by a pure strategy. In other words, if both u(�1) and u(�2) are sustained by pure strategies (other

than the outside option), we don�t need randomization in between.

Let ei; bsi ; bni ; �si;�ni ; i = 1; 2 be the associated e¤ort and continuation payo¤s. Suppose

� = ��1 + (1� �)�2; for some � 2 (0; 1):

Let e be the e¤ort level such that

y(e) = �y(e1) + (1� �)y(e2):

Given that y is increasing and concave, we know that

y(�e1 + (1� �)e2) � �y(e1) + (1� �)y(e2);

so

e � �e1 + (1� �)e2
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Also, let

bs = �bs1 + (1� �)bs2
bn = �bn1 + (1� �)bn2
�s = ��s1 + (1� �)�s2 ;

�n = ��n1 + (1� �)�n2 :

One can check that this set of e; bs; bn; �s; and �n satisfy all of the constraints.

In addition,

u (�)� (�u(�1) + (1� �)u(�2))

= �c(e1) + (1� �)c(e2)� c(e)

� 0;

since c is increasing and convex and e � �e1 + (1� �)e2:

LEMMA A3: Let (�; u(�)) be a PPE payo¤ sustained by pure strategy in period 1. Let (�s; us)

and (�n; un) be the continuation payo¤s following the shock and nonshock state respectively. Then

us = u(�s);

un = u(�n):

Proof. Suppose to the contrary that us < u(�s): Consider a new payo¤ pair that specify the same

actions and continuation payo¤s as (�; u(�)) except that the continuation payo¤ (�s; us) is changed

to (�s; us + ") for some small positive ": This change does not violate any of the constraints, and

therefore the new payo¤ pair from this decomposition is also a PPE payo¤. This new payo¤ pair

again gives the agent a payo¤ of u(�) + �(1� �)" and this violates the de�nition of u(�):
Identical proof can be used to show that un = u(�n):

LEMMA A4:

� (�n � �s) = (1� �) (bn � bs) (IC_N)

Proof. Recall that bn � bs and in addition, ICN implies � (�n � �s) � (1� �) (bn � bs): Suppose
instead we have � (�n � �s) > (1� �) (bn � bs): Let

�0s = �s + �";

�0n = �n � (1� �)":
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for some small " (while keeping bs; bn and e): The budget constraint and the truthtelling conditions

remain satis�ed under the new set of continuation payo¤s (�0s and �
0
n).

In addition, the new set of continuation payo¤s satisfy

��0s + (1� �)�0n = ��s + (1� �)�n

This implies that the agent�s value under the new continuation payo¤s is

(1� �) (�bs + (1� �) bn � c (e)) + �(�u
�
�0s
�
+ (1� �)u

�
�0n
�
)

� (1� �) (�bs + (1� �) bn � c (e)) + �(�u (�s) + (1� �)u (�n));

where the inequality follows from the concavity of u:

9.1.1 Di¤erentiability of the Payo¤ Frontier

Now we proceed to show that u is di¤erentiable in all of its domain. De�ne �m as the largest point

at which u(�) is maximized. Note that �m � �0: We �rst show that for � > �m; e > 0 and u is
di¤erentiable.

LEMMA A5: For � > �m; e(�) > 0; u is di¤erentiable and

u0(�) = � c
0

y0
:

Proof. Consider � + " for some " > 0: Then choose e0 > e(�) such that

(1� �) y(e0)� (� + ") = (1� �) y(e)� �:

Let �0s = �s and �0n = �n be unchanged. Then this set of e0; �0s; and �
0
n is feasible for � (in the

sense that the constraints are satis�ed.)

By the de�nition of the payo¤ frontier, we have

u(� + ") � u(�)� (1� �) (c(e0)� c(e))

This implies that

u0+(�) � �
c0

y0
:

Now for � > �m; we have

u0+(�) < 0;
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and this implies that c
0

y0 > 0; or e(�) > 0:

Given e(�) > 0; we can repeat the argument above for " < 0; we have

u0�(�) � �
c0

y0
:

Since u0�(�) � u0+(�); we then have

u0+(�) = u
0
�(�) = �

c0

y0

Next, we show that RCS constraint is binding when u0+(�) > � 1
1+�� :

LEMMA A6: If u0+(�) > � 1
1+�� , then RC � S is binding.

Proof. As we move from � to � � "; we let e0 = e(�); �s0 = �s; and �0n = �n: This set of e¤ort
and continuation payo¤s relax the non-negativity constraint, it hardens the RCs constraint (but

this does not matter since it isn�t binding in this �rst place.) Finally, this set of values increase u

by 1
1+�� : In other words,

u(� � ")� u(�) > "

1 + ��
:

As " goes to 0, we have the desired result.

The next lemma shows that when � � �
1+� ; the payo¤ frontier peaks at �m = �: Since u is

di¤erentiable for all � > �m; this establishes the di¤erentiability of u when � � �
1+� :

LEMMA A7: If � � �
1+� ,

�m = �:

Proof. Suppose to the contrary that �m > �: By the previous two lemmas, we have e(�m) = 0

and RCs binds. First, we have from IC-N that

�s =
1

�
(�m + (1� �) (1 + ��) bs) > �m:

In addition, when RCs binds and when �s > �m; we must then have bs > 0: This is because if

RCs binds and bs = 0; we would get �s = �; contradicting the above.

Moreover, given that RCs binds, we have (using IC-N) that

��s =
1 + �

�(1� �)�m �
�(1 + ��)

�(1� �) �:
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Now suppose the principal�s payo¤ decreases from �� to �� � "; one can keep the e¤ort e = 0;

decreases continuation payo¤ of the shock state from �s to �s � 1+�
��(1��)"; keep �n; and adjust bs

accordingly to keep the IC-N. This set of actions and continuation payo¤s are feasible for small "

because we maintain RCs and IC-N by choice and the only constraint it hurts is bs � 0, which is
slack in the �rst place by above.

In addition, the agent�s expected payo¤ from the change above cannot exceed u(�m� ") by the
de�nition of u as the payo¤ frontier. Sending " to 0, we get

u0� (�m) �
� � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)u
0
� (�s) :

But this is a contradiction because u0� (�m) � 0 by the de�nition of �m: However, u0� (�s) < 0

(because �s > �m) and
���(1��)
�(1��) < 0 (by assumption), so the right hand side is negative. This is a

contradiction.

LEMMA A8: If � > �
1+� ; and �m > �; then for � with u

0
+(�) >

��(1+�)�
(1+�)���(1��) ;

�s > �:

Proof. Consider a payo¤ � such that u0+(�) > � 1
1+�� . Then RC � S is binding in this case.

Now suppose the principal�s payo¤ increases from � to � + ": One can keep the e¤ort e; increases

continuation payo¤ of the shock state from �s to �s + 1+�
��(1��)"; keep �n; and adjust bs accordingly

to keep the IC-N. This set of actions and continuation payo¤s are feasible for small " because we

maintain RCs and IC-N by choice and it relaxes the non-negativity constraint bs � 0.
In addition, the agent�s expected payo¤ from the change above cannot exceed u(�m+ ") by the

de�nition of u as the payo¤ frontier. Sending " to 0, we get

u0+ (�) �
� � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)u
0
+ (�s) :

Given � > �
1+� ; the above implies that when u

0
+(�) >

��(1+�)�
(1+�)���(1��) we have u

0
+ (�s) < u0+ (�) ;

and, thus.

�s > �:

Combining the two lemmas above, we now have the following proposition.
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Proposition A1: u is di¤erentiable for all � 2 [�; �]:

Proof. When �m = �; we have e(�) > 0 for all � > �; and, thus, we have u0(�) = � c0

y0 for all �:

By the two proceeding lemmas, the only remaining case is for � > �
1+� and that �m > �:

Now suppose to the contrary that there exists a payo¤ level � at which u0+(�) < u
0
�(�): Note

that in this case we must have u0+(�) � 0 (because otherwise u is di¤erentiable with u0 = � c0

y0 ):

Given � > �
1+� ; we then have u

0
+(�) >

��(1+�)�
(1+�)���(1��) ; and by the lemma above, we have �s > �

and that

u0+ (�) �
� � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)u
0
+ (�s) :

Note also that we have bs > 0 (because the RCs binds at � and that �s > �); then by using the

same argument as in Lemma A7, we have

u0� (�) �
� � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)u
0
� (�s) :

Combining these two inequalities above, we see that when u0+(�) < u0�(�); we then have �s > �

and that

u0+(�s) < u
0
�(�s):

Now let �nd be the largest nondi¤ereniable point. If �nd exists, we then have a contradiction

because the argument above implies that �s(�nd) > �nd is again nondi¤erentiable. If the largest

nondi¤erentiable point does not exist, let �nd be the supremum of such points. Take a nondif-

ferentiable point � su¢ ciently close to �nd: The argument above then implies that �s(�) is again

nondi¤erentiable and �s(�) 2 (�; �nd). Since � is su¢ ciently close to �nd; we have that

u0+ (�s) > u
0
+ (�)� "

for some small ":

It follows that then that

u0+ (�) � � � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)u
0
+ (�s)

� � � � (1� �)
�(1� �) +

�(1 + �)

�(1� �)(u
0
+ (�)� "):

But for small enough "; the above implies that u0+ (�) < 0; which contradicts the nondi¤eren-

tiability of �:
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9.2 Main Results

In this subsection, we derive the main results of the paper. To facilitate the proofs, the order

that the lemma are proved is not identical to the order that they are stated in the main text but

is similar. The main text shows that the total payo¤ of the relationship satis�es the following

constrained optimization problem:

� + u(�) = max
e;bs;�s;�n

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��bs
(2)

such that

� = (1� �) y (e) + ��s � (1� �) (1 + ��) bs: (ICN)

��s � �� � (1� �) (1 + �) bs: (RCS)

bs � 0; (NegS)

e � 0: (Nege)

�n � �: (Self-enf)

De�ne the Lagrangian as

� + u(�) = L = (1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��bs

+�1(� � (1� �) y (e)� ��s + (1� �) (1 + ��) bs)

+�2(��s � �� � (1� �) (1 + �) bs)

+�3bs + �4e+ �5(� � �n):

The key FOCs are those with respect to �s and bs :

�(1 + u0 (�s))� �1 + �2 = 0: (FOC-�s)

���+ �1 (1 + ��)� �2 + �3 = 0 (FOC-bs)

The envelop condition gives that

1 + u0(�) = �1: (envelop)
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Combining these three conditions give us the following lemma.

LEMMA 1. The slope of the payo¤ frontier u (�) satis�es

du (�)

d�
> �1 for all � 2 [�; �] .

Proof. By combining the FOC wrt �s and the envelop condition, we have �(1 + u0 (�s)) =

1+ u0(�)� �2 � 1+ u0(�): If u0(�) < �1; we have u0 (�s) < u0(�); and this leads to a contradiction
at � = �: Therefore, we have u0(�) � �1 for all �:

Now suppose du(�)
d� = �1 for some �: De�ne �0 = minf� : du(�)d� = �1g: For � 2 [�0; �]; we have

we have u0 (�s) = �1 by the previous paragraph, and we also have u0 (�n) = �1 since �n � �s:

Therefore, once � 2 [�0; �]; its continuation payo¤s stay in the interval forever.
From Lemma A5, we see that the e¤ort will always be at the �rst best level. Now if bs > 0 for

some � 2 [�0; �]; we can lower bs by " and lower y (e) by (1 + ��) " for small enough ": This change
relaxes the RCS constraint while keeping all other constraints. For small enough "; this change

increases �+u(�) by (1� �) ��" (since y0 = c0 at �rst best level of e¤ort), which is a contradiction.
This implies that bs = 0 for all � 2 [�0; �]:

The above implies that for any � 2 [�0; �]; bs = 0; e = efb: Since once � 2 [�0; �]; its continuation
payo¤s stay in the interval forever, the �rm always get �rst-best level of e¤ort, and it has the option

of never paying the worker (since bs = 0): This implies that the worker�s payo¤ is less than �c(efb);
which is less than his outside option. This is a contradiction.

An immediate consequence of Lemma 1 is the following.

LEMMA 3. The optimal continuation pro�t in a period without a shock is given by

��n = � for all � 2 [�; �] .

Proof. The FOC wrt to �n gives that

(1� �) �
�
1 + u0 (��n)

�
� �5 = 0:

If ��n < �; then �5 = 0; and we have u
0 (��n) = �1: This violates Lemma 1.

38



9.2.1 Condition A holds: � � �
1��

When condition A holds, Lemma A7 shows that �m = �: This leads to the following lemma:

LEMMA 2. Suppose that the magnitude of the shock � is large relative to its frequency �, in

the sense that

� � �

1� � : (A)

Then (i.) all payo¤s on the payo¤ frontier can be sustained by pure strategies; in other words,

�0 = �. And (ii.), the payo¤ frontier is everywhere strictly downward sloping, that is, u0 (�) < 0

for all � 2 [�; �]. The payo¤ frontier is therefore maximized at �, that is, �m = �.

Proof. Lemma A7 implies that �m = � here. Since � � �0 � �m; this implies that all three

are equal, and gives (i). For (ii), given �m = �; we see that u0 (�) = � c0

y0 for all � by Lemma

A5 and Theorem 1. The only thing remaining to check for (ii) is then that e > 0: Suppose to

the contrary that e = 0; then u0 (�) = 0 and the RCS binds by Lemma A6. This implies that

��s (�) =
1
� (� + (1� �) (1 + ��) bs) > �: However, as we see from Lemma 4 below (which does not

rely on this lemma), ��s (�) � � when � > �
1�� .

Now to characterize the dynamics of the relationship, we �rst note the following two results.

LEMMA 4. The optimal continuation pro�t in a period with a shock is given by

��s (�) = � and ��s (�) < � for all � > �:

Proof. Combining the FOC of �s and the envelop condition, we have that

1 + u0(�) = �(1 + u0(�s)) + �2:

Note that if �2 = 0; we have u0(�s) > u0(�) since 1 + u0(�) > 0 by Lemma 1. This implies that

��s (�) < �:

Now suppose �2 > 0: There are 2 possibilities. First, �3 = 0: In this case, we have

�u0 (�s) = �
� � � (1� �)

1 + �
+ �

1� �
1 + �

u0 (�) :

And given � > �
1�� ; we can check that u

0 (�s) > u0(�), and again, we have ��s (�) < �:

Second, �3 > 0: In this case, we have ��s (�) = � (since this is the only way to have both �2 > 0

and �3 > 0): Therefore, ��s (�) < � except when � = � and we have �
�
s (�) = �:

39



LEMMA 5. Optimal e¤ort e� (�) satis�es

0 < e� (�) < efb for all � 2 [�; �] .

where efb is �rst best e¤ort. Moreover, e� (�) is weakly increasing in � and satis�es

e� (��s (�)) < e
� (�) for all ��s (�) < �.

Proof. The �rst part follows from Lemma 1 and Lemma A5 ( which implies that u0 = � c0

y0 ): The

second part follows from Lemma 4 directly.

To further characterizes the dynamics, we need to distinguish two cases, i.e. whether Condition

B is satis�ed or not. To see the role that Condition B plays, note that the payo¤ frontier can

be broadly classi�ed into three regions: the right region (� 2 (�R; �] with u0(�) > � 1
1+�� ); the

middle region (� 2 [�L; �R] with u0(�) = � 1
1+�� ); and the left region (� 2 [�; �

L) with < � 1
1+�� ):

Condition B is satis�ed if and only if ��s(�
L) = �:

LEMMA 6. Let e > 0 denote the e¤ort level for which y (e) = �. Then the optimal bonus in

a shock state b�s (�) is equal to zero for all � 2 [�; �] if and only if

c0(e)

y0(e)
� 1� � (1� �)

1 + ��
: (B)

Proof. Suppose Condition B holds, which is equivalent to u0(�) � �(1��)�1
1+�� :We need to show

that b�s (�) = 0 for all � 2 [�; �] : Note that

�3 = �2 + ��� (1 + ��)(1 + u0(�)):

Since �1 > 0 (by Lemma 1) and �2 � 0 (by Kuhn-Tucker), it is immediate that �3 > 0 if u0(�) <
� 1
1+�� : And, therefore, the complementary slackness condition implies that b

�
s (�) = 0:

Now consider u0(�) > � 1
1+�� : Suppose to the contrary that b

�
s (�) > 0: This implies that �3 = 0;

and, thus,

�u0 (�s) = �� � � (1� �)
1 + �

+ �
1� �
1 + �

u0 (�)

> �� � � (1� �)
1 + �

� � 1� �
1 + �

(
1

1 + ��
)

= �
� (1� �)� 1
1 + ��

� �u0 (�) ;
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where the last inequality follows from Condition B and Lemma A5. This is a contradiction since

�s � �: This implies that b�s (�) = 0 for all u0(�) > � 1
1+�� :

Moreover, the above allows us showing that u is strictly concave in a neighborhood of �: To see

this, we �rst show that �2 > 0 in a neighborhood of �: Suppose the contrary, we have a decreasing

sequence of �i converging to � such that �2(�i) = 0: By Lemma 4, we have ��s (�i) < �i; and, thus,

��s (�i) also converge to �: This implies that,

1 + u0(�) = lim
i!1

(1 + u0(�i)) = lim
i!1

�(1 + u0(��s (�i))) = �
�
1 + u0(�)

�
;

so that 1 + u0(�) = 0; and this is a contradiction by Lemma 1. Now given that �2 > 0 in a

neighborhood of �; and that b�s (�) = 0; we must have ��s (�) = �; and, from the ICN constraint,

we have

� = (1� �)y(e�(�))� ��:

This implies that y(e�(�)) is strictly increasing in � in a neighborhood of �; and by Lemma A5, we

have that u0 is strictly increasing in a neighborhood of �:

Now suppose u0(�) = � 1
1+�� : Again suppose to the contrary that b

�
s (�) > 0; and using the

same argument as above, we will again have u0 (�s) = u0 (�) ; and, thus, by the strict concavity

we have �s = �: Now consider all payo¤s with u0(�) = � 1
1+�� ; and let �l be the left boundary of

this set. For �0 < �l; we have u0(�0) > � 1
1+�� by de�nition. Then by above, we have b

�
s (�

0) = 0:

Then upper-hemicontinuity of the optimizers imply that b�s (�l) = 0 (this should read as that 0 is

an element of equilibrium bonus associated with �l): Then ICN constraint implies that

�l = (1� �)y(e�(�l))� ��:

But for all payo¤s with u0(�) = � 1
1+�� ; From ICN constraint, we have

(1� �)y(e�(�l))� �� = �l

� � + (1� �)(1 + ��)b�s (�)

= (1� �)y(e�(�))� ��:

And since e�(�l) = e�(�); the inequality is an equality, we must then have b�s (�) = 0; which is a

contradiction. This concludes the proof that b�s (�) = 0 all � 2 [�; �] :
Now consider Condition B fails. In this case, u0(�) > �(1��)�1

1+�� : Suppose to the contrary that

b�s (�) = 0 for all � 2 [�; �] : By ICS; this implies that

� � (1� �)y(e�(�)) = ���s(�):
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Since for each �; there is a unique e�(�) (which follows because c0

y0 is strictly increasing), the above

implies that ��s(�) is unique, and thus, �
�
s is continuous.

Note that if u0(�) = � 1
1+�� ; we then have

�(1 + u0(��s(�))) = (1 + u
0(�))� �2 �

��

1 + ��

This implies that u0(��s(�)) �
�(1��)�1
1+�� < u0(�): Therefore, ��s(�) > �:

Consider a �0 such that u0(�0) = � 1
1+�� + " for a small enough ": Since

�3(�
0) = �2(�

0) + ��� (1 + ��)(1 + u0(�0));

and �3 � 0; we must have �2 > 0: Given b�s (�0) = 0 and the complementarity slackness of RCS, we
then must have ��s(�

0) = �: Therefore, u0(��s(�
0)) = u0(�) > �(1��)�1

1+�� .

Now takes an increasing sequence of �0i such that �
0
i converges to � where recall that u

0(�) =

� 1
1+�� : Note that �

�
s(�) > � but �

�
s(�

0
i) = �; and this violates the continuity of �

�
s:

LEMMA 7. Suppose that Condition B holds. Then the optimal bonus in a period without a

shock is given by

b�n (�) =
�

1� � (� � �
�
s (�)) :

Proof. This follows directly from b�s (�) = 0 (Lemma 6) and �
�
n (�) = � (Lemma 3):

LEMMA 8. Suppose that Condition B does not hold. Then there exist three pro�t levels �1,

�2, �3 that satisfy � � �1 < �2< �3 < � such that (i.) the optimal bonus b�s (�) that the �rm pays

in a shock period is strictly positive if and only if � 2 (�1; �3). And, (ii.), when b�s (�) is strictly

positive it is non-monotonic in �; in particular

db�s (�)

d�
> 0 for all � 2 (�1; �2) and

db�s (�)

d�
< 0 for all � 2 (�2; �3):

Proof. Combining the envelop condition and the FOC wrt bs; we have

�3 = �2 + ��� (1 + ��) (1 + u0(�)):

This implies that if u0(�) < � 1
1+�� ; we have �3 > 0; and, thus, b

�
s (�) = 0: Let �3 = inff�; u0(�) <

� 1
1+��g:
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Now consider u0(�) � � 1
1+�� : From the the FOC wrt �s; we have

�u0 (�s) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�)� �3:

Since u0 (�s) � u0 (�) ; this implies that

u0 (�) � 1 + �

�(1� �)(�u
0 (�)� � (1� �)� �

1 + �
+ �3):

De�ne �1 as the (smallest) payo¤ such that u0 (�1) = 1+�
�(1��)(�u

0 (�) � �(1��)��
1+� ): The above

then implies that for � < �1; we have �3(�) > 0; and, thus, b�s (�) = 0: Note that Condition A

implies that u0 (�1) < u0 (�) (so that �1 > �): Condition B implies that u0 (�1) > � 1
1+�� : Therefore,

Lemma A6 implies that for � < �1; the RCS is binding. When both RCS is binding and b�s (�) is

equal to 0; we then also have ��s (�) = �: By ICN; it is then clear that y(e(�)) is strictly increasing

in � 2 [�; �1]; and, thus, u is strictly concave in this region.
Now de�ne �2 = supf�; u0(�) > � 1

1+��g: Now for � 2 (�1; �2); we show that we must have

�3 (�) = 0: Now suppose the contrary that �3 > 0; and we have b�s (�) = 0. Then on the one hand,

by the de�nition of �1; we must then have

�u0 (��s (�)) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�)� �3

<
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�1)

= �u0 (�) :

And therefore, ��s (�) > �: On the other hand, the de�nition of �2 implies that RCS binds at �:

But this is a contradiction because we have just shown that ��s (�) > � and b
�
s (�) = 0:

Note that we have just shown that for � 2 (�1; �2); �3 (�) = 0: Therefore, we have

�u0 (��s (�)) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�) :

Using the result above that u is strictly concave in [�; �1] (and that u0 (��s (�)) < u0 (�)); we

can then show that u is strictly concave in � 2 (�1; �2): This then implies that ��s (�) is strictly
increasing in �: Since RCS is binding for � 2 (�1; �2); so that (1� �) (1 + �) b�s (�) = �(��s (�)��),
we must then have db�s(�)

d� > 0 for all � 2 (�1; �2) .
Finally, for � 2 (�2; �3); we have u0 (�) = � 1

1+�� ; and thus, u
0(��s (�)) =

�(1��)�1
1+�� > � 1

1+�� : This

implies that ��s (�) is unique (since u is strictly concave for � < �2): Therefore, for all � 2 (�2; �3);
��s (�) is identical. Using ICN; we then get that

db�s(�)
d� < 0 for all � 2 (�2; �3):
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LEMMA 9. Suppose that Condition B does not hold. Then the optimal bonus in a no shock

period is given by

b�n (�) = b
�
s (�) +

�

1� � (� � �
�
s (�)) :

Proof. This is again directly the consequence of ��n (�) = �:

9.2.2 Condition A Fails � < �
1��

In this case, the payo¤ frontier and the dynamics is very similar to the previous, although it is no

longer true that we always have ��s (�) � �: To see this, note that for � 2 (�1; �2) (in Lemma 8),
we have

�u0 (��s (�)) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�) :

And for u0 (�) � 0; we always have u0 (��s (�)) � u0 (�) when condition A is satis�ed.

When Condition A fails, it is no longer true that we always have u0 (��s (�)) � u0 (�) : This is

true if and only if

u0 (�) � �� (1 + �)�
(1 + �)� � �(1� �) :

This observation implies that the dynamics of the relationship can be divided into two cases,

depending on the size of u0 (�) :

Case 1: u0 (�) � ��(1+�)�
(1+�)���(1��) In this case, we again always have ��s (�) � �; and the dynamics of

the relationship is identical when Condition A holds. Speci�cally, if Condition B holds, the dynamics

is characterized by that in Proposition 1. Otherwise, the dynamics is given by Proposition 2.

Case 2: u0 (�) > ��(1+�)�
(1+�)���(1��) In this case, it is no longer true that we always have ��s (�) � �:

De�ne �� as the payo¤ such that

u0 (��) =
�� (1 + �)�

(1 + �)� � �(1� �) :

Note that given � < �
1�� ; we have u

0 (��) < 0; so �� > �m: In addition, we can check that

u0 (��) > � 1
1+�� : Now let �L = supf� : u0 (�) > � 1

1+��g and �
R = inff� : u0 (�) < � 1

1+��g:
We have �m < �� < �L � �R < �: Note that �L corresponds to �2 (in Lemma 9) and �R

corresponds to �3: The dynamics of the relational contract can be summarized by what happens

in the subintervals. Note that in all these intervals we have c0

y0 = �u
0(�) and ��n (�) = �:
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(i): For � 2 [�m; ��]; we have

�u0 (��s (�)) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�) ;

(1� �)b�s (�) = �(��s (�)� �]:

In this region, we have ��s (�) � � and the inequality is strict for all � < ��: Therefore, the

relationship always improves in this region.

(ii): For � 2 (��; �L); we have

�u0 (��s (�)) =
� (1� �)� �

1 + �
+ �

1� �
1 + �

u0 (�) ;

(1� �)b�s (�) = �(��s (�)� �]:

� Here, however, ��s (�) < � and the relationship su¤ers when the shock state occurs. Note

that RCS binds in this region and we have
db�s(�)
d� > 0:

(iii): For � 2 [�L; �R];

u0 (��s (�)) =
� (1� �)� 1
1 + ��

(1 + ��) b�s (�) = y (e�(�)) +
�

1� � (�
�
s (�)� �):

Here, we again have ��s (�) < �. Note that RCS is slack in this region and we have
db�s(�)
d� < 0:

(iv): For � 2 [�R; �];

�(u0 (��s (�)) + 1) = u0 (�) + 1;

b�s (�) = 0:

9.3 Long-term Contract

Recall that ht = fy1; :::ytg is the history of past outputs. Let mt = fm1; ::mtg be the history of
past announcements, and tn be the last time the �rm announces no shock (and tn = 0 if the �rm

has never announced no shock.) Let bt(ht;mt) be the �rm�s payment to the worker in period t:

Proposition LT1: As T approaches 1; the following class of contracts approaches �rst best.

bt(h
t;mt) =

8>><>>:
0

0

(c(eFB) + u)(1 + ��1 + ��2 + :::+ ��(t�1�tn))

if ht 6= fyFB; :::::; yFBg
if mt = n and t < tn + T

otherwise:
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Proof. To simplify the exposition, we normalize u to be zero. Under the construction above, the

worker�s payo¤ is 0 by putting eFB in each period. Any other e¤ort choice (except e = 0) gives

the worker a negative payo¤. Therefore, choosing et = eFB along the equilibrium path is a best

response for the worker.

Given that the worker always chooses et = eFB (so that the worker�s payo¤ is always 0);

the �rm�s payo¤ is equal to the value of the relationship. This implies that the �rm�s payo¤ is

maximized if the value of the relationship is maximized. Alternatively, this implies that the �rm

will choose a strategy that minimizes the destruction of the value of the relationship. Note that the

value of the relationship is destroyed when the �rm pays out the bonus to the worker in a shock

state.

The �rm chooses his strategy to minimize the value destruction. The strategy of the �rm is a

mapping from his private history of

For the �rm, his value that minimizes the surplus destruction (from paying out money when

it is ine¢ cient to do so.)

It is clear that if the state is no-shock, the �rm would like to announce that it is the no-shock

state because this allows for paying the worker cheaply and thus avoids surplus destruction.

It remains to check that when it is a shock state, the �rm will be truthtelling and no to claim

that it is a no-shock state and pays out money. Given that the contract has the feature of renewal

(after a no-shock state is announced), it su¢ ces to consider the following strategy: the �rm make

truthful announcements until period n (in which he always announces no shock has happened).

Given this strategy, the expected destruction of surplus can be calculated explicitly. In particular,

let k = �c(eFB) and Vn be the expected destruction of surplus when there no-shock has been

announced for the past n periods. (The expected destruction of surplus is given by V0): Then

V0 = (1� �)(0 + �V0) + ��V1;

V1 = (1� �)(0 + �V0) + ��V2;

:::

Vn�1 = (1� �)(0 + �V0) + ��Vn;

and

Vn = �k(1 + �
�1 + ��2 + :::+ ��(n�1)) + �V0:

Or alternatively,

Vn = �k
1� �n

�(n�1)(1� �)
+ �V0
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From the �rst n� 1 equations, we see that for m < n;

Vm � ��Vm+1 = (1� �)�V0;

and this implies that

V0 � (��)n Vn = (1� �)�
1� (��)n

1� �� V0;

or

Vn =
1� � + � (��)n (1� �)

(��)n (1� ��) V0

Now using Vn = �k 1��n
�(n�1)(1��) + �V0; we have

V0 =
�k 1��n

�(n�1)(1��)
1��+�(��)n(1��)
(��)n(1���) � �

= ��k
�n(1� �n)
(1� �)2

(1� ��)
(1� (��)n+1)

:

Now we want to show that this term is minimized at n = T:

Note that

�n�1(1� �n�1)
1� (��)n � �n(1� �n)

1� (��)n+1

=
�n�1

(1� (��)n)(1� (��)n+1)
((1� �n�1)(1� (��)n+1)� (1� (��)n)�(1� �n))

=
�n�1

(1� (��)n)(1� (��)n+1)

�
1� �n�1 � � + ��n � (��)n+1 + � (��)n

�
>

�n�1

(1� (��)n)(1� (��)n+1)
�
1� �n�1 � �

�
:

Therefore, for

n > 1 +
log(1� �)
log �

;

we have �
n�1(1��n�1)
1�(��)n � �n(1��n)

1�(��)n+1 > 0; and thus
�n(1��n)
1�(��)n+1 is decreasing with respect to n > 1+

log(1��)
log � :

Let M be

min
n�1+ log(1��)

log �

f��k�
n(1� �n)
(1� �)2

(1� ��)
(1� (��)n+1)

g:

Therefore, for n > M; ��k �
n(1��n)
(1��)2

(1���)
(1�(��)n+1) is decreasing in n; and moreover, ��k

�n(1��n)
(1��)2

(1���)
(1�(��)n+1)

approaches 0 as n goes to in�nity. Therefore, there exists an N > M such that for n > N;

��k
�n(1� �n)
(1� �)2

(1� ��)
(1� (��)n+1)

< M:
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Now take any T > N; we see that ��k �
n(1��n)
(1��)2

(1���)
(1�(��)n+1) is minimized at n = T:

Finally, the expected surplus that gets destroyed is

��k
�T (1� �T )
(1� �)2

(1� ��)
(1� (��)T+1)

;

so as T goes to in�nity, this contract approximates �rst best.

9.4 Liquidity Constraint

In this case, we have the extra liquidity constraint that

bn � (1 +m)y

for some m � 0: As can be seen below, this constraint signi�cantly complicates the problem. Part
of the reason is that the payo¤ frontier is no longer di¤erentiable. To make the analysis more

tractable, we assume that it is impossible for the �rm to pay the worker in a shock state (� =1);
so that bs = 0:

Using the same proof as in the unconstrained case, it can be shown that ICN binds, so

� (�n � �s) = (1� �) bn:

This allows us substituting out bn and rewriting the liquidity constraint as

��n � � + (1� �)my: (Liq)

Similar to the unconstrained case, we can show that there exists a �0 such that for all � � �0
the payo¤ frontier u(�) is sustained by pure strategy. And for � < �0 the payo¤ frontier u(�) is

sustained by randomization. To the right of �0; the payo¤ frontier satis�es the following functional

equation:

� + u(�) = max
e;�s;�n

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n)) (3)

such that

� = (1� �) y (e) + ��s: (ICN)

��n � � + (1� �)my(e): (Liquidity)

e � 0: (NegS)
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�n � �: (Self-enf)

Unlike the unconstrained case, the payo¤ frontier is longer di¤erentiable so we cannot use the

Lagrangian method here. Nevertheless, the concavity of u implies that at each point both the left

and the right derivative exist. Similar to the unconstrained case, we again have u0�(�) > �1 for all
�; where u0�(�) stands for the left derivative of u at �: This implies that

�n = minf�;
1

�
(� + (1� �)my)g:

9.4.1 Structure of the Payo¤ Frontier

To proceed with our analysis, we �rst show that for � � �0; the payo¤ frontier can be classi�ed

into (at most) three regions. The right region is the same as in the unconstrained case so that the

liquidity constraint is slack. The left region is one in which the liquidity binds and that �n < �: In

other words, the relationship does not jump back to � after a no shock state. In the middle region,

both the liquidity constraint binds and that �n = �:

Our lemma below shows that there exists a threshold �r such that if the liquidity constraint is

slack if and only if � > �r:

Lemma L1: There exists �l: and �r with �0 � �l: � �r < � such that the following holds. (i)
If � > �r; �n = � and � + (1� �)my > ��: (ii) If � 2 [�l:; �r]; �n = � and � + (1� �)my = ��:
(iii) If � < �l:; �n < � and � + (1� �)my = ��:

Proof. To prove the existence of �r; we show that if � + (1� �)my > ��; then for all �0 � �; we
also have �0 + (1� �)my0 > ��:

Consider two cases. In Case 1, we have e(�) = 0: In this case, we have

� > ��:

Now since �0 > � and y0 � 0; the result is immediate.
In Case 2, we have e(�) > 0: Then the same argument as in the unconstrained case (Lemma

A5) shows that u is di¤erentiable at �; and speci�cally,

u0(�) = � c
0

y0
:
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For �0 > �; the same argument as in the unconstrained case shows that

c0

y0
�
�0
�
� �u0+(�0) � �u0+(�) =

c0

y0
(�):

This implies that e(�0) � e(�); and again the liquidity constraint is slack at �0. Finally, note that
�r < � because for all � > ��; we have � + (1� �)my > ��:

To prove the existence of the middle region (and thus �l); we show that if �n(�) = �; then for

all �0 > �; we have �n(�0) = �: Suppose the contrary, then there exists �0 > � such that

�0n = �
0 + (1� �)my0 < � + (1� �)my = �:

Note the above implies that e(�) > 0. Now as we move from � to ��" for some small " > 0; we see
that by decreasing e and �n (which is possible because e > 0) and keeping �s the same, we have

c0

y0
(�) � (m+ 1)(1� �)(1 + u0�(�))� u0�(�):

Similarly, as we move from �0 to �0 + " for some small " > 0; we see that by increasing e0 and �0n

(which is possible because �0n < �) and keeping �
0
s the same, we have

c0

y0
(�0) � (m+ 1)(1� �)(1 + u0+(�n(�0))� u0+(�0);

Since �0 > �; we have

�u0+(�0) � �u0�(�):

Since �n(�0) < �; we have

u0+(�n(�
0)) � u0�(�):

Combining the above, we have
c0

y0
(�0) � c0

y0
(�);

i.e., e(�0) � e(�):
But this contradicts that

�0 + (1� �)(m)y0 < � + (1� �)(m)y:

Lemma L1 implies that the right region always exists since �r < �: In contrast, the middle

region or the left region does not always exist. This can occur, for example, when m is large and

when � is large (meaning that y is large). In this case, the liquidity constraint never binds and we

go back to the unconstrained case. At the end of this section, we give su¢ cient conditions of when

the left and the middle region exist.
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9.4.2 Properties of the Three Region

Before summarizing the properties of e; �s; and �n in the three regions, we �rst note that the

maximizers are all unique.

Lemma L2: For each �; there is a unique set of e(�); �s(�); and �n(�) that maximizes u(�):

Proof. Let ei; �si;�ni ; i = 1; 2 be the associated e¤ort and continuation payo¤s as maximizers.

Then for some � 2 (0; 1); let

�s = ��s1 + (1� �)�s2 ;

�n = ��n1 + (1� �)�n2 ;

Let e be the (unique) e¤ort level such that

y(e) = �y(e1) + (1� �)y(e2):

Note that the concavity of y implies that e � �e1 + (1� �)e2:
It is clear that e; �s; �n is also a feasible solution. In addition, the concavity of u and convexity

of e implies that this new set of choice is also a maximizer. Moreover, the strict concavity of y and

the strict convexity of c implies that the value generated by this new set of choices is strictly larger

than those from ei; �si;�ni ; i = 1; 2 when e1 6= e2:
Therefore, we must e1 = e2: It follows that �s1 = �s2 from the promise-keeping constraint that

(� = (1� �)y + ��s): Finally,

�n = minf�;
1

�
(� + (1� �)(m)y)g

is also unique.

Since e; �s; and �n is upper-hemicontinuous in �; a direct consequence of the lemma above is

that they are continuous in �:

Proposition L1: The set of e¤ort and continuation payo¤s (e(�); �s(�); and �n(�)) satisfy

the following.

(i): For � > �r; the payo¤ frontier is di¤erentiable, and

c0

y0
= �u0(�);

� (1� �) + �u0+ (�s) � u0 (�) � � (1� �) + �u0� (�s) ;

�n = �:
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Both e and �sweakly increase with �:

(ii): For � 2 [�l:; �r]; if m 6= 0;

y =
�� � �
(1� �)m ;

�s =
(m+ 1)� + ��

m
;

�n = �:

e decreases with � and �s increases with �:

If m = 0; we have �l: = �r = ��; u is not di¤erentiable at this point, and e and �s satis�es

�u0+(�l) � c0

y0
� �u0�(�l);

� (1� �) + �u0+ (�s) � u0 (�) � � (1� �) + �u0� (�s) :

(iii) For � 2 [�0:; �l];

(1 +m) (1� �) (1 + u0+ (�n))�
c0

y0
� u0+ (�) � u0� (�) � (1 +m) (1� �) (1 + u0� (�n))�

c0

y0
: (L-e-n)

And if �s > �;

�(1 +m) (1� �) + (1 +m)�u0+ (�s) +
c0

y0
� mu0+ (�) � mu0� (�) (L-e-s)

� �(1 +m) (1� �) + (1 +m)�u0� (�s) +
c0

y0
:

In addition,

�u 0+ (�s)+ (1� �) u 0+ (�n)� u 0+ (�)� u 0� (�)� �u 0� (�s)+ (1� �) u 0� (�n) : (L-s-n)

�s is weakly increasing in �:

Proof. The inequalities in Lemma L3 are all equalities if u is di¤erentiable: In this case, the

equalities can be obtained directly from the Kuhn-Tucker conditions of Lagrangian associated the

constrained maximization problem. The formal proof of the inequalities is mostly routine and is

omitted here. We mention only two points here. First,when m = 0; the middle region consists of

one point only: � = ��: To see that u is not di¤erentiable at ��; note that from the right region,

we have that

u0+(��) = �
c0

y0
:
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From the left region, we have that

u0�(��) � �
c0

y0
+ (1 +m) (1� �) (1 + u0+ (�n)):

Since u0+ (�n) > �1 as in the unconstrained case, we have that

u0�(��) > u
0
+(��);

and therefore, u is not di¤erentiable at ��:

Second, �s is weakly increasing for � 2 [�0:; �l]: To see this, we may assume that u is di¤er-
entiable at � and �s; and the argument can be adapted to the non-di¤erentiable case. When u is

di¤erentiable at � and �s; we can write L-e-s as

�(1 +m) (1� �) + (1 +m)�u0 (�s) +
c0

y0
= mu0 (�)

Now as � increases, the right hand side weakly decreases. Now if �s decreases, then u0 (�s) weakly

increases. Moreover, if � increases and �s decreases, this implies that e increases. Consequently, c
0

y0

strictly increases. In other words, if �s decreases, the left hand side strictly increases. This leads

to a contradiction. Therefore, we have that �s increases weakly with �:

Note that �s(�) weakly increases with � in all three regions. Since �s(�) is continuous in � this

implies that �s(�) weakly increases with � for all � 2 [�0:; �]: In contrast, e(�) is decreasing in the
middle region. In other words, the worker�s e¤ort level increases as the �rm�s payo¤ decreases.

9.4.3 Dynamics

Here, we show that for all � 2 (�; �); we have �s < � < �n: It is easy to show that �s < � < �nhe
technical di¢ culty is to rule out cases in which u has a line segment that contains all �s; �; and

�n: We proceed with the following sequence of lemmas.

Lemma L3: If u is a line segment in [�; �+]; then �s < � < �n for all � 2 (�; �+]:

Proof. Note that �n(�) > � (because otherwise we have �n = �s = �): Consider the following

two cases. In case 1, �s(�) = � for all � 2 (�; �+]: In this case, � = �� + (1 � �)y; so that y is
weakly increasing in �: This implies that �n = minf�; 1� (� + (1� �)my)g is strictly larger than �
since d�n

d� > 1 whenever �n < �: Therefore, the claim holds in this case.

In case 2, by the monotonicity of �s in �; there exists a �0 < �+ such that �s(�) > � if and

only if � > �0: Now note that for � 2 (�0; �+]; we must have �n � �+: This is because otherwise,
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the slope (left derivative) at �n is strictly larger than that at � and the slope at �n is weakly larger

than that at �: This violates L-s-n.

In particular, the above implies that �s(�+) � �n(�+) � �+: In fact, we must have �s(�+) <
�n(�+) � �+: (This is because if �s = �n; we must have y = 0; but this implies that � = ��s < �s:)
Now moving � to the left. Note that for � � �0; we can obtain u(�) by keeping the e¤ort level and
having d�n

d� = d�s
d� =

1
� : (And by the uniqueness of the maximizer, this is the unique set of choices.)

Now at �0; we have �s(�0) = �; e(�0) = e(�+); and �n < �+:

Now consider values in [�0�"; �0] for some small " > 0: For all � 2 [�0�"; �0], note the following.
Speci�cally, u0(�) = u0(�n) = u0�(�+); which is the slope of the line segment. (This is because for

" small enough, �n(�) < �+ by continuity of �n): By L-e-n, this implies that e¤ort in [�0 � "; �0] is
constant.

Also note that all � 2 [�0 � "; �0]; we have �s(�) = � by the monotonicity of �s: This implies
that � = ��+(1��)y: But if e¤ort is constant, the above equality cannot hold for all � 2 [�0�"; �0]:
This leads to a contradiction. In other words, case 2 cannot happen. (In other words, if there is a

line segment between � and �+; we must have �n = �s = �; and, thus, �s < � < �n:)

Lemma L4: For all � < �; we have � < �n(�):

Proof. Suppose otherwise. There exists a � such that �s � �n � �: Note that these two

inequalities cannot both be equalities. This implies from L-s-n that u0+(�s) = u
0
+(�); so u is a line

segment between �s and �: Let �� be (the principal�s value of) the left-most point of this line

segment. By the previous lemma, we must have �� > �: Let the slope of this line segment be s:

Now moving � towards ��: De�ne �0 be the (maximal) principal�s value such that �s(�0) = �+:

Note that at �0; we have �n(�0) � �0: (This is because if �s(�) > ��; we can obtain u(�) by setting
e(�) = e(�+) and having d�n

d� = d�s
d� =

1
� :) Now consider � 2 [�

0; �0+ "]: By the monotonicity of �s;

we have �s � �0: Therefore, u0(�s) = s: In addition, we cannot have �n strictly exceed �+: Because
if this were to happen, it violates L-s-n.

First, note that we cannot have both �s(�) < �� and �n(�) > �0: For this to happen, it means

that y must increase (since the distance between �s and �n has increased). But if y increases and

�n > �
0; we would violate u0� (�) � m (1� �) (1+u0� (�n))� c0

y0 in L-e-n (since compared to � = �
0;

the right hand side decreases strictly yet the left hand side is constant.)

Second, we cannot have �s < ��: Because if this were to happen, we have u0�(�s) > s: In

addition, we must have u0�(�n) > s by the �rst point. And this violates L-s-n.

Therefore, by the monotonicity of �s; we must have �s = ��: This implies that e¤ort goes down
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as � moves to the left since � = ��s + (1 � �)y: Moreover, this implies that �n goes down, and,
thus, u0(�n) = s for � 2 [�0 � "; �0]: But this violates L-e-n.

Lemma L5: If u is a line segment in [��; �]; then �s < � for all � 2 [��; �):

Proof. This follows because � is in region 3. Since u0+(�s(�)) > u
0
�(�); we must have �s(�) � ��:

Moreover, e¤ort in region 3 is constant (given that u is a line segment). This implies that as �

moves to the left from �; �s strictly decreases. Therefore, for all � 2 [��; �); we have �s(�) < ��:
This proves the claim.

Lemma L6: For � > �; we have �s < �:

Proof. Suppose otherwise. There exists a � such that � � �s � �n: Note that these two

inequalities cannot both be equalities. This implies from L-s-n that u0�(�n) = u
0
�(�); so u is a line

segment between � and �n: Let �+ be (the principal�s value of) the right-most point of this line

segment. By the previous lemma, we must have �+ < �: Let the slope of this line segment be s:

Now moving � towards �+: De�ne �0 be the (minimal) principal�s value such that �n(�0) = �+:

Note that at �0; we have �s(�0) � �0: (This is because if �n(�) > �+; we can obtain u(�) by keeping
the e¤ort level and having d�n

d� = d�s
d� = 1

� :) Now consider � 2 [�
0; �0 + "] for small enough ": By

continuity of �s; we remain having u0(�s) = s: This implies that we cannot have �n(�) > �+:

Because this violates L-s-n. When m = 1; we know that �n is strictly increasing in �; so the

argument above shows that when m = 1; we cannot have �s < �: For below, we assume that

m 6= 1):
Since �n(�) < �+; this implies that there exists a �00 such that y(�00) < y (�0) : (recall that

�n =
1
� (� + (1� �)(m)y), and here we use that �+ < �:) At �00; however, since both u0(�00) =

u0(�s(�00)) = s; the above violates the L-e-s constraint.

Proposition L2: For all � 2 (�; �),

�s < � < �n:

If �0 > �, then �s(�0) = �: In this case, the relationship terminates with probability 1.

Proof. �s < � < �n follows directly from the Lemma L4 and L6. Now consider �0 > �: Suppose

to the contrary �s(�0) > �; then from L-s-n; we see that u0(�0) = u0(�s) = u0(�n); and, thus, there

exists �+ � �0 such that u is a line segment in [�; �+]: Then using the same argument as in Lemma
L6, we get a contradiction.
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To see that the relationship terminates with probability, it su¢ ces to show that the continuation

payo¤ falls below �0 after �nite number of shocks. Suppose the contrary. Then there exists a �

such that �ks(�) > � for all k; where �ks(�) denotes the continuation payo¤ after k
th consecutive

shocks. Note that f�ks(�)g1k=1 is a decreasing sequence by above, it has a limit point, which
we denote as �1s (�): Now by the continuity of �s; we have �s(�1s (�)) = �s(limk!1(�

k
s(�))) =

limk!1(�
k+1
s (�)) = �1s (�): But this is a contradiction because by the Lemma L6, we that for all

� > �; we have �s(�) < �:

9.4.4 Existence of the Left and Middle Region

The existence of the left and middle region is equivalent to that the liquidity constraint binds for

some payo¤ level of the �rm. One necessary and su¢ cient condition for the left or the middle region

to exist is as follows. De�ne �u as the maximal equilibrium payo¤ of the �rm when the liquidity

constraint is absent.

Lemma L7: The PPE payo¤ frontier contains more than the right region, i.e., (�r > �) if

and only if the following Condition L holds:

��u > (1 +m)�: (L)

Proof. It su¢ ces to look for the condition on whether the liquidity constraint is violated at �

for the unconstrained problem. Under the unconstrained problem, �n (�) = �u and �s (�) = �: In

addition, RCS states that

� = ��s (�) + (1� �)y(e(�)):

This implies that y(e(�)) = (1��)�: Therefore, the liquidity constraint that ��n � �+(1��)my(e)
is equivalent to

��u � (1 +m)�:

Finally, we include a su¢ cient condition that the middle region exists. The proof used here

provides a new way of showing that the value function is di¤erentiable and may be of independent

interest.

Lemma L8: If Condition (L) is satis�ed, the middle region exists if (1 +m)(1 � �) � 1 and
(1 +m)(1� �)1+mm � < 1:
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Proof. Suppose the contrary. Let �d be the payo¤ that divides the left and the right region. It

is immediate that u is not di¤erentiable at �d with

u0+ (�d) = � c
0

y0
;

u0� (�d) = (1 +m) (1� �) (1 + u0 (�))� c0

y0
:

Let �u0(�d) = u0+ (�d)� u0� (�d) > 0: Then L-e-s implies that

�u0(�d) �
(1 +m)�

m
�u0(�s(�d)):

This implies that u is not di¤erentiable at �s(�d).

Note that by L-e-n, we have

�u0(�s(�d)) � (1 +m)(1� �)�u0(�n(�s(�d))):

This implies that u is not di¤erentiable at �n(�s(�d)).

Since u is is di¤erentiable for all � 2 [(�d; �]; the above implies that either �n(�s(�d)) = �d

or �n(�s(�d)) 2 (�s(�d); �d): In the later case, we can show, using the same argument as above,
that either �2n(�s(�d)) = �d or �

2
n(�s(�d)) 2 (�n(�s(�d)); �d); where the superscript denotes that

applying �n twice. Continuing with the same argument, we can show eventually that

�d = �
K
n (�s(�d))

for some K: In addition, for all k � K; we have

�u0(�kn(�s(�d))) � (1 +m)(1� �)�u0(�k+1n (�s(�d)))

Linking this chain of inequalities, we get

�u0(�d) �
(1 +m)�

m
(1 +m)K(1� �)K�u0(�d):

This is a contradiction.
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